روشی برای تولید متاریس‌های مولد کد‌های بلکی و LDPC کود‌سازی

معین سروققدم، میرحسین هوشنگ، حسین آقابی

چکیده

سیستم‌های کودسازی از لحاظ تئوری دارای قدرت زیادی در مبتنی بر روش‌های ارسال اطلاعات می‌باشند، اما به هم کش آنها با محیط بیرون، یک منبع مبتنی بر سیستم‌های عملی آنها است، که به‌وسیله یک متریس بلکی کودسازی، به‌طور مبتنی بر مشکل محترم طراحی شده‌اند. هر یک از کودسازی کودتایی با یک متریس دودوبی با مشخصات خاص مورد به متریس مولد توصیف می‌شود. اگر چه پیشنهادی سیستم در رابطه با روش‌های کد‌گذاری خاص توصیف یک متریس مولد مطرح است، اما نتایج رسیده، پدیده کردن متریس‌های یکم، به‌صورت کدکش این کلی ارائه نشده است. در این مقاله برای کدکش اولیه متاریس‌های مولد به کمک الگوریتم‌های زیست‌شناسی ارائه شده است. خصوصاً الگوریتم‌های بدون مارتینیهای مولد که جهت استفاده به‌عنوان یک روش کلی و سریع، نسبت به روش‌های رایج‌ترین، پیچیده و محدود گزارش می‌شود، و مورد استفاده قرار گرفت.

کلیدواژه‌ها

کدکش‌های پایدارساز بلکی کودسازی، ماتریس‌های مولد، الگوریتم‌های زیست‌شناسی، کدکش‌های LDPC کودسازی

مدت‌بردار

کدکش‌های پایدارساز بلکی کودسازی، ماتریس‌های مولد، الگوریتم‌های زیست‌شناسی، کدکش‌های LDPC کودسازی

قلم‌خواه

علیرغم قدرت نظری سیستم‌های کودسازی، یک منبع مبتنی بر مسیر تحقیق عملی آنها وجود دارد و آن بر فرض مسئول سیستم کودسازی تا مبتنی بر موسوم است. این مسئله در نمونه‌ای از دو زیر ماتریس X κ (n − k) مشخص شده است. شکل شده است.

\[
G = [X|Z]
\]

صبرت‌های ماتریس G مستقل خطی بوده و زیر ماتریس‌های X κ (n − k) مشخص شده است. شکل شده است.

\[
XZT + ZXT = 0
\]

که پیوسته ماتریس Z بوده و جمع به ضریب دو ابتکارگری می‌شود. که به‌دانه‌ای که ماتریس مولد آنها پرداخته‌اند، تعداد "1" ها به نسبت ابعاد ماتریس بسیار کم باید (به کدکش‌های LDPC)
محاسبات کوانتومی بر اساس مفاهیم همدان بیت در دنباله کلاسیک، یک گام به‌زودی است که به عنوان کوانتومی (p) کوپنبرگ آماده گرده ورود می‌شود. در فضای هیلتون دو بند، یک کوپنبرگ بصورت
\[
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\]
به‌عنوان یک کوپنبرگ کلاسیک به‌دست می‌آید. برخی از سیستم‌های کوانتومی کیبردی که به‌روش‌های متعددی در تعریف و طراحی شده‌اند، این امر را می‌توانند. در این مقاله مورد استفاده قرار گرفته است.

\[
\frac{\alpha}{|+\rangle} + \frac{\beta}{|\rangle} = 1
\]

یکی از توصیفات (کوپنبرگ) کوانتومی به یک ماتریس بکافی (K) است که در تعریف کهف‌های پایدارازاس در دوره‌های پایدارازاس می‌تواند به‌کار گرفته شود. در این مقاله، ماتریس‌های کوپنبرگ مورد استفاده قرار گرفته‌اند.

\[
X = \begin{pmatrix} X_1 & X_2 & \cdots & X_n \end{pmatrix}, Y = \begin{pmatrix} Y_1 & Y_2 & \cdots & Y_n \end{pmatrix}, Z = \begin{pmatrix} Z_1 & Z_2 & \cdots & Z_n \end{pmatrix}
\]

عملگرهای پایدارازاس کوپنبرگ

که کوپنبرگ ماتریس کوپنبرگ
کار با پایدارسازهای در تحلیل کدهای پایدارساز کوانتومی سخت و نامتناسب است. روش توصیف دیگر برای پایدارسازهای استفاده از ماتریس مولد دودویی \(G \) به صورت رابطه زیر است.

\[
G = [XZ]
\]

(1)

هر کدی از زیر ماتریس‌های \(X \) و \(Z \) در ماتریس \(G \) سطح‌ها منتظر با پایدارسازهای مختلف و ستون‌ها منتظر با کویونت‌های مختلف می‌باشد. بنابراین، نحوه تشکیل ماتریس دودویی نمایشگر کد روی مجموعه پایدارساز به صورت زیر است:

\[
X \text{ در هر کدی از پایدارسازها در صورت وجود عاملگر}
\]

(2)

یا \(Y \) در هر کدی منتظر با مکان این عاملگر در پایدارساز، در زیر ماتریس \(X \) یک قرار داده می‌شود. همچنین در صورت وجود عاملگر \(Y \) یا \(Z \) یا \(X \) منتظر در زیر ماتریس \(Z \) نیز یک در نظر گرفته می‌شود. سایر درایه‌های ماتریس صفر می‌باشد. به عنوان مثال، ماتریس دودویی \(G \) برای کد پنج کوبیتی مذکور را به صورت رابطه (2) می‌توان نوشت:

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1
\end{pmatrix}
\]

پایدارسازهای یک کد بلوکی کوانتومی جایگزینی هستند. در ماتریس مولد دودویی نمایشگر کد وقی شرط جایگزینی برق الکتریک است که دید رابطه (1) برق باشد. همچنین شرط استقلال عاملگرها، باعث می‌شود که ماتریس \(G \) مربوط کامل باشد.

الکترونیک زننیک

الکترونیک زننیک [23]، الکترونیکی جستجوی تصادفی هستند که فراوان تکامل طبیعی را شبیه‌سازی می‌کنند. این الکترونیک‌ها، تکامل را با جمعیتی از افراد (کوپریومن) شروع کرد و با استفاده از مکانیزم‌های ایجاد تغییر و درک طبیعی، جمعیت را با استفاده از بهینه‌سازی سوق می‌دهند.

در این روش، جستجو به صورت تصادفی با جمعیتی از راه حل‌های الگویی آگاه می‌شود. اگر معیارهای نهایی از نظره او، \(G \) عملکردهای مثبت یا ناپایدار می‌شود، رسانی جمعیت استفاده می‌شود. هر چه کدی از عملکرد تکرار
عنوان نمونه، نتایج شبیه‌سازی برای تولید ماتریس‌های مولد کد‌های بلوکی و LDPC کوانتومویی

روش برای تولید ماتریس‌های مولد کد‌های بلوکی و LDPC

یعنی تابع برابر زدگی (Zaman) به همراه جواب را به دهد که مقدار ان صفر شود، به عبارتی ماتریس A ماتریس تماماً صفر شود. شروع شرط ۰ زمان به یک رسیده که شرط دوم، یعنی مستقل خط هر سطر با سطح دیگر در ماتریس مولد برقرار نشده است. ابتدا مرتبه ماتریس منظوره با هر کروماتوریوم $x - k$ محاسبه می‌شود. اگر مقدار با عدد رابرت باشد، مقدار جریمه تعیین می‌شود که به مقدار تابع برابر زدگی اضافه می‌گردد. (متغیر $penalty$) در تابع برابر زدگی $F_r(C)$ برای تعیین مقدار جریمه یک روش معمول در ماتریس با ابعاد در نظر گرفته شده، تعداد کل تابعیت ماتریس مولد را تولید می‌کند.

$$F_r(C) = \sum_{i=1}^{m} (a_{ij}) + penalty$$

تابع برابر زدگی بهایی با احتساب شرط استقلال عامل‌ها در رابرت (۰) باعث داده است:

$$F_r(C) = \begin{cases} \sum_{i=1}^{m} (a_{ij}) & \text{if } Rank(C) = n - k \\ \sum_{i=1}^{m} (a_{ij}) + penalty & \text{if } Rank(C) \leq n - k \end{cases}$$

الگوریتم پیشنهادی برای کد‌های LDPC کوانتومویی

در این بخش نتایج شبیه‌سازی الماتریس‌های مولد کد‌های LDPC کوانتومویی را به گونه‌ای تغییر می‌دهیم که ماتریس‌های مولد LDPC کوانتومویی را به سه ابعاد از آنها که ماتریس‌های مولد LDPC در این دسته از کدها پرکنده هستند، عنی تعداد کدها خلاصه کمتر از صفرها هستند، شرطی را به صورت نسبی تعداد کدها صفر داشته که صفرها ایجاد کرده نیست. بنابراین تعداد کدها خلاصه کمتر از رابرت ۲ که در مورد جریمه متغیر به صورت کمیک تعریف کرده مقدار آن و استیشن به تعیین یک گردید تنها به

$$y = (nonzero/total) \times 100 \times 100 + \cdots + 100 + 100$$

که در آن M کدهای y گردید که به تعداد $total$ و $nonzero$ به طور گردید که در محدوده کدهای y باشد کل درایه‌های ماتریس X را مقداری می‌داند.

نتایج شبیه‌سازی

در این بخش الگوریتم پیشنهادی معرفی شده در به‌دست آمده در تمرکز برای تولید LDPC کد‌های مولد LDPC کوانتومویی را برای این الگوریتمها به تولید به‌کار رفته‌ایزد راه‌هایی می‌گردد. به

<table>
<thead>
<tr>
<th>$n \times m$</th>
<th>اندازه ماتریس</th>
<th>نوع جمعیت</th>
<th>10×10</th>
<th>5×10</th>
<th>میزان</th>
<th>3×10</th>
<th>میزان</th>
<th>5×3</th>
<th>میزان</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r \times n$</td>
<td>ग्रेड</td>
<td>300</td>
<td>50</td>
<td>50</td>
<td>300</td>
<td>50</td>
<td>50</td>
<td>300</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$n \times m$</th>
<th>اندازه ماتریس</th>
<th>نوع جمعیت</th>
<th>10×10</th>
<th>5×10</th>
<th>میزان</th>
<th>3×10</th>
<th>میزان</th>
<th>5×3</th>
<th>میزان</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r \times n$</td>
<td>ग्रेड</td>
<td>300</td>
<td>50</td>
<td>50</td>
<td>300</td>
<td>50</td>
<td>50</td>
<td>300</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$n \times m$</th>
<th>اندازه ماتریس</th>
<th>نوع جمعیت</th>
<th>10×10</th>
<th>5×10</th>
<th>میزان</th>
<th>3×10</th>
<th>میزان</th>
<th>5×3</th>
<th>میزان</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r \times n$</td>
<td>ग्रेड</td>
<td>300</td>
<td>50</td>
<td>50</td>
<td>300</td>
<td>50</td>
<td>50</td>
<td>300</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$n \times m$</th>
<th>اندازه ماتریس</th>
<th>نوع جمعیت</th>
<th>10×10</th>
<th>5×10</th>
<th>میزان</th>
<th>3×10</th>
<th>میزان</th>
<th>5×3</th>
<th>میزان</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r \times n$</td>
<td>ग्रेड</td>
<td>300</td>
<td>50</td>
<td>50</td>
<td>300</td>
<td>50</td>
<td>50</td>
<td>300</td>
<td>50</td>
</tr>
</tbody>
</table>
نتیجه‌گیری
در این مقاله روشی برای پیدا کردن ماتریس‌های مولت دیکهای LDPC با پایداری بلک، که LDPC کاتانومی و کدگاه LDPC دارای ماتریس‌های دکهای زننیک ارائه شده است. نتایج شبیه‌سازی، نشان می‌دهد برای صرفهجویی در فضا، معادل دهمی اعداد موجود در دیروبره‌های هر کدام از زیر ماتریس‌های X و Z، اگر به شده این برای هر ماتریس تعداد درابرهای تعداد و تعداد کدهای ان نیز گزارش شده است که نشان دهنده برکته بودن ماتریس است. تنظیمات الگوریتم زننیک برای هرکدام از اعداد مطلوب جدول ۱ انجام شده است.

شکل ۲. نمودار نتایج برای دو مدل: ماتریس‌های مولت دیکهای LDPC با پایداری تبرکه (ب) و LDPC کاتانومی و کدگاه LDPC (الف) و LDPC دیکهای زننیک (ج)
جدول ۲: نمونه خروجی ماتریس‌های مولد کده‌های بلوکی

<table>
<thead>
<tr>
<th>اندازه ماتریس</th>
<th>۱۰ × ۸۰</th>
<th>۱۰ × ۴۰</th>
<th>۵ × ۴۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>نمونه ماتریس</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل ۳: نمودار تابع برآوردگی بر حسب تعداد نسل برای ماتریس‌های مولد کدهای LDPC

(a) ۱۰×۱۰، (ب) ۱۰×۴۰، (ت) ۵×۴۰
جدول ۳ نمونه خروجی ماتریس‌های مولک‌کده‌های LDPC از الگوریتم رنگ‌برداری برای ایجاد ماتریس مختلف

<table>
<thead>
<tr>
<th>نمونه ماتریس</th>
<th>تعداد درایه‌های ماتریس</th>
<th>تعداد یک‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۸۰۰</td>
<td>۴۰</td>
</tr>
<tr>
<td></td>
<td>۴۰۰</td>
<td>۲۰</td>
</tr>
<tr>
<td></td>
<td>۲۰۰</td>
<td>۱۰</td>
</tr>
</tbody>
</table>

[۱۸] یا [۱۸] علی کرمی لنگی و منیره هوشنگ "کاهش تعداد کیتاهو مودر نیاز برای کدهای پایدار از لحاظ کامپیوتری" ارسال شده در بست و یکی از کنفرانس‌های ماهنامه برق ایران، دانشگاه فردوسی مشهد، ۱۳۸۴.
[۱۹] Y. Hwang, B.-S. Choi, and M. Jeon, "On the construction of stabilizer codes with an

