چکیده
تولید علفه (ذیتوده هوایی) قابل استفاده برای چراز دام. یکی از مهم‌ترین عوامل مؤثر بر ظرفیت جرست که متأثر از
نوسانات آب و هوایی است. استفاده از داده‌های اقلیمی یک روش آسان و کم‌هزینه در برآورد تولید علفه می‌باشد. در این تحقیق
به منظور بررسی کارایی مدل‌های آماری در برآورد تولید درازمدت مرتع و بافتند ارتباط بین تولید گونه‌های غالب و مورد تعیف
دام با متغیرهای اقلیمی (بارندگی، دما، رطوبت، تبخیر و تعرق واقعی و...) در یک دوره آماری ده ساله (از سال 87 تا 92)، مدل
تعادل آب و اقلیمی به روش 56 (با استفاده از نرم‌افزار Cropwat) و مدل آماری رگرسیون (ساده و چندگانه) در مرتع
استنی حوزه شیرکوه مورد استفاده قرار گرفت. ارزیابی مدل برآوردی نشان داد که دقت‌ترین مدل در منطقه مدل بارآورد تبخیر
و تعرق واقعی با استفاده از نرم‌افزار 8 می‌باشد. با توجه به محاسبه تبخیر و تعرق واقعی در دوره دسامبر ترسالی و
احتمالی مدل برآورد تولید علفه مرتع تعیین شد (147.8 هکتار بر آب و در نرم‌افزار 8 و بر این اساس تولید علفه 340 کیلوگرم بر
سال تولید گردید.

واژه‌های کلیدی: تبخیر و تعرق واقعی، شاخه اقلیمی، روش TOLID درازمدت.
مقدمه

نوشان تولید در طی سال‌های مختلف یکی از مشکلاتی است که اکوسیستم‌های مرطعی به وسیله در مناطق خشک و نیمه‌خشک با آن رویه و هنگام، باعث نماید. تغییرات هواشناسی در طول فصل‌های مختلف سال، به‌رغم محدودیت بر روی تولید علف و کمک مؤثری در ارزیابی پوشش گیاهی مرطع‌نما نماید. عوامل متعددی بر روی تولید علف در اکوسیستم‌های مرطعی مؤثرند. بخشی از عوامل در طول سال ثابت‌اند، اما برخی دیگر نابحران و متغیر می‌باشد که بدین‌های هوشمند یکی از مهم‌ترین عوامل عاملی می‌باشد. از این‌رو دو مدلی آب و هوایی مجدداً می‌باشد. این مدل، ازاری که در ارائه مدل علمی برای تحلیل مدل‌ها و واکنش‌های گیاهی به تغییرات آب و هوایی موجود می‌باشد. مدلهای این روش‌های سیستم‌بندی بر خلاف تولید علف در حیات‌زیست معمول یک‌بوده و بر اساس برنامه‌ریزی یکی از فصل‌های خاص در قالب مدل تولید علف ملاحظه می‌شود. در این مقاله بررسی باید به‌روش‌های تنکال کردن که تولید مرطع را از داده‌های قابل‌توجه و رطوبت اول فصل براور دادن. در بررسی مدل تولید علف توسط (وایت و هنگس) ۱۹۸۱، با بروز تولید علف در بیشتر علت‌های بررسی شد. نتایج نشان داد که مدلهای بهره‌گیری از شاهکارهای قابلیتی (پارادیکس، تبیخ و تعریف یک‌تولید واقعی) و رطوبت اول فصل روش‌ها، باور به تولید علف را بیش‌بنی‌کرده است. بروز گیاهی از آمر و داده‌های قابلیتی

*ـ Hart& Carlson

۱. Wight and Hanks

۲. Snowa & Hyder
رسیدن بارنگی سال قبیل و بارنگی چهاره، سال دوادوهم/شماره چهارم/رستاتان ۱۳۹۷

شاخص علمی: پژوهشی مرتبط، سال دوادوهم/شماره چهارم

مواد و روش‌ها

موقعیت منطقه مورد بررسی

آزمایشگاه‌های: آزمایشگاه استان ۱۸۲ تا ۱۲۴ میلیمتر و متوسط دمای سالانه آن بین ۱۰/۸ تا ۱۴/۲ درجه سانتی‌گراد

- Artemisia sieberi
- Astragalus myriacanthus

موقعیت در منطقه در جدول ۱ ارائه شده است. وضعیت مصرف

قسمت‌های از سایی دفع و گزارش روست آن در

محدوده میدان روستاهای قهقرابی داده، بخش قرار گرفت. این

واحدهای در حوالی روستا و موطن و به‌همراهی بی‌روشی و شدید

از طریق به‌کار گرفته و جزئی معرفت و تحقیق بیشتری در آن

صورت گرفته است. نوع دام غالب منطقه بز می‌باشد.

روش تحقیق

با اثربه به متأسفی به دست در این تحقیق، برای بررسی

تلیف شده مرتبط از مدل‌های آزمایشگاهی (ساده و

چندگانه) و مدل تعداد آب بهره‌گیری شد. چون نسبت

نویسه‌های آرامی، داده‌های آب و هوایی از نمودار

ایستگاه آب‌های منطقه (ایستگاه سیستمیک علی آباد) و تولید علوفه واقع

مصداق به مدت دمسال در مرتع‌های جیره شیرکوه و جمع‌آوری

گردید. سپس تغییر شاخص‌های اقیانی (تیخر و تعرق

گاه مراجع، تیخر و تعرق ییاسیل و واقعی)، اندازه‌گیری

روتیپ اول قحل روش، تبیین و بررسی‌های خاک و

ویژگی‌های گیاه (مرتع) و بیشتر میدانی، آزمایشگاهی،

کتابخانه و ترکیبی صورت گرفته و در پایان محاسبات و

تجزیه و تحلیل به روش زیر انجام گرفت.
جدول 1- اسامی گیاهان موجود در حوزه شیرکوه

<table>
<thead>
<tr>
<th>نام علمی</th>
<th>گروه</th>
<th>کلاس غربی‌زبانی</th>
<th>گروه روسی</th>
<th>فرم رسمی</th>
<th>فرم روسی</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artemisia aucheri</td>
<td>Asteraceae</td>
<td>III</td>
<td>یونت</td>
<td>چند ساله</td>
<td>یونت</td>
</tr>
<tr>
<td>Artemisia seiberi</td>
<td>Asteraceae</td>
<td>I</td>
<td>یونت</td>
<td>چند ساله</td>
<td>یونت</td>
</tr>
<tr>
<td>Cirsium congestum</td>
<td>Asteraceae</td>
<td>III</td>
<td>یونت</td>
<td>چند ساله</td>
<td>یونت</td>
</tr>
<tr>
<td>Hertiaaungustifolia</td>
<td>Asteraceae</td>
<td>III</td>
<td>غرفه</td>
<td>چند ساله</td>
<td>غرفه</td>
</tr>
<tr>
<td>Lactuca serriola</td>
<td>Asteraceae</td>
<td>III</td>
<td>یونت</td>
<td>چند ساله</td>
<td>یونت</td>
</tr>
<tr>
<td>Noaeamacronata</td>
<td>Chenopodiaceae</td>
<td>III</td>
<td>یونت</td>
<td>چند ساله</td>
<td>یونت</td>
</tr>
<tr>
<td>Colchicum sp</td>
<td>Colchicaceae</td>
<td>III</td>
<td>یونت</td>
<td>چند ساله</td>
<td>یونت</td>
</tr>
<tr>
<td>Convolus fruticosus</td>
<td>Convolvulaceae</td>
<td>III</td>
<td>یونت</td>
<td>چند ساله</td>
<td>یونت</td>
</tr>
<tr>
<td>Euphorbia connata</td>
<td>Ephedraceae</td>
<td>III</td>
<td>یونت</td>
<td>چند ساله</td>
<td>یونت</td>
</tr>
<tr>
<td>Astragalus inchredensis</td>
<td>Fabaceae</td>
<td>III</td>
<td>یونت</td>
<td>چند ساله</td>
<td>یونت</td>
</tr>
<tr>
<td>Astragalus myriacanthos</td>
<td>Fabaceae</td>
<td>III</td>
<td>یونت</td>
<td>چند ساله</td>
<td>یونت</td>
</tr>
<tr>
<td>Astragalus schystocalyx</td>
<td>Fabaceae</td>
<td>III</td>
<td>یونت</td>
<td>چند ساله</td>
<td>یونت</td>
</tr>
<tr>
<td>Stachysinflata</td>
<td>Lamiaceae</td>
<td>II</td>
<td>یونت</td>
<td>چند ساله</td>
<td>یونت</td>
</tr>
<tr>
<td>Boissiersarrosa</td>
<td>Poaceae</td>
<td>III</td>
<td>یونت</td>
<td>چند ساله</td>
<td>یونت</td>
</tr>
</tbody>
</table>

آثار و داده‌های آب و هوایی بین‌المللی مورد استفاده در طول ده سال (1392-1382) شامل بارندگی، ماهانه، سالانه، دما (کمینه و بیشینه روزانه و میانگین ماهانه) و بارش خورشیدی، میانگین مرعوب باد روزانه و دمای ذخیره میانگین رطوبت نسبی استفاده در شناسایی میانگین بارشی می‌باشد. رطوبت نسبی و دمای آب آبیاری، تهیه شده www.weather.ir.

- اثر آورد تولید علوفه از طریق رگرسیون

برای ارتفاع میزان آلیمینی میدان (بارندگی، دما، رطوبت نسبی، باد و عملکرد آفاتی) در تولید علوفه از روش همبستگی و رگرسیون (ساله و چندگانه) استفاده شد. برای ایبکار ابزار روش همبستگی مناسب‌ترین مدل (اریس) رطوبت نسبی، دما، باد و عملکرد آفاتی) و یک تولید علوفه مشخص شد و سپس معادله خیال هر یک از میانگین معنی‌دار مستقل با تولید علوفه از طریق رگرسیون ساده و چندگانه مشخص گردید.

- اثر آورد تولید از طریق مدل تحلیل آب برای ارتدود تولید محصول، مدل ERHYM-II (31) مورد توجه قرار گرفت. این مدل یک مدل مرتبه تحلیل آب و اقلیم است که تولید مراتع را بر یک تابع تغییر و تعرق در نقطه

اندازه‌گیری تولید و بوشش گیاهی

برای اندام‌های گیاهی تولید و بوشش تاکی (اندازه‌گیری) به حساب گونه‌آزمایی، از 4 تا 10 متر مربعی در طول زمان چهار نوار چهاردست متری یا طویل متغیر با فاصله 100 متر از یکدیگر به طول از طول 15 پالت (2 متر مرتبه که فاصله پالت اول به سر نوار 10 متر و فاصله یکدیگر 28 متر از یکدیگر در قبال گونه‌آزمایی شد (2). داده‌ها در قالب فرم نمونه‌برداری با ذکر محل نمونه‌برداری، شماره ترانسکت، شماره پالت، تاریخ برداشت، نام گونه‌ها و برداشت داده‌ها از جمله فرم جانعلی،درصد دانه و بوشش گیاهی، درصد لاش‌بر، درصد سنگ و مرغوزه و درصد خاک کن با درک داشتند. جهت اندازه‌گیری تولید علوفه در زمان آمادگی مرتع، طی ورود به زمین (توالید علوفه) به تفکیک درون یک پنج پالت (5) پالت در سطح و توزیع و بوشش تاکی آنها در همه پالت‌ها اندام‌گیری شد. سپس با قرار دادن علوفه تر در معادل شده در هواز آزاد به مدت دومه‌ه، وزن علوفه خشک هر گونه تولید شده نسبت به وزن هر گونه در قالب چهار میزان شهریو می‌باشد (3) برای گونه، استفاده از اندازه‌گیری بوشش تاکی و تولید علوفه در نرم‌افزار Excel استفاده شد.
MAPR=1000(BCP - BWP)ZR

که در آن: MAPR: تولید باور به داده‌های تقاضای (میلی متر) مقدار آب در تغذیه گیاه (میلی متر) مقدار آب حاصل از مقدار تغذیه گیاه (میلی متر) می‌باشد. در میان آب خاک در نقطه پرورش و تغذیه گیاه می‌باشد. در آب خاک استفاده خاک که این آب قابل جذب گیاه است، آب سیلی و مصالح خاک

TAW=1000(θBCP - θBWP)ZR

در بالاترین نقطه از شاخه اقلیمی (Ta/TP) اعضاکرد Ya/Yp = Ta/TP

درستی این مدل بازار از 110 نمایشگاه است. هم‌اکنون به عنوان رایج بیشترین مدل بوده تولید از سوی بی‌پروژه‌گران (FAO 10 و 15) توصیه و مورد اکثر قرار گرفته است.

بررسی و مطالعه خاک

بر اساس تغییرات مصرف‌های در طول هر ترکیب یک بروقی خاک به عقیده چندین نگاه رشته (جمعه 4 بروقی) حفر شد و نسبت به تشریح نوآورهای و تغییرات رطوبت در یک‌هفته‌اندازی به‌دست آمده شد. توجه به ناحیه رشته‌واهی گیاهان و همچنین تغییرات بافت، ساختار و رنگ خاک از آن‌ها 70-40، 0-30، 30-60 سانتی‌متر نمونه کگی شد. بافت خاک به‌دست هیبردی‌متری و به کمک سه‌تایه‌گردینگر، نمونه‌برداری وزن مخصوص ظاهری خاک در سایه مورد طالعه نمونه‌های دست‌خورده توسط سیرالسنان مخصوص از عمق‌ها مورد‌طالعه برداشته شد و به آزمایشگاه‌های انتقال بافت. جهت تعیین وزن خشک خاک نمونه‌ها به مدت 24 ساعت در دستگاه آون کشاورزی و سپس به پسماند وزن بر حسب وزن عادی مقدار وزن مخصوص با تغییرات در ترکیب خاک برای بروقی تولید در مدل رطوبت ناپاک در ناحیه رشته‌واهی در این‌نواحی از فصل روش مورد نیاز است. در این تحقیق رطوبت خاک به روش مستقیم اندازه‌گیری شده و نکات کار نمونه‌های خاک در طوری در پایان کشاورزی گردیده و به آزمایشگاه‌های انتقال بافت پر می‌گردد. نمونه‌ها حساب شدند و سپس در داخل آبنامگی شدند. در خشک شدن، نمونه‌ها دوباره وزن شدند و نرخ خشک آن‌ها تعیین گردید.

ظرفیت زراعی و نقطه پرورشگاه در صورتی از دست‌گاه‌های تغییرات pressure plate استفاده از دستگاه‌های تغییرات گردید. برای این کار رطوبت خاک نمونه‌ها در فشار 0/10 توصیف نظریات (Ta/TP) این تغییرات خاک در محدوده توصیه رشته گیاه مالا به‌طور مداوم قرار خاک و در دو حالت ظرفیت رازا و پرورشگاه است. (5) که به صورت زیر محاسبه می‌شود:
دوه‌رده رشد گیاه در چهار مرحله شامایز شامل مرحله اولیه، مرحله توسه گیاه، مرحله میان فصل و مرحله پایان فصل به ترتیب 15-22-30-45 روز پایه می‌باشد. در گیاه‌شناسی، این گونه‌ها در مرحله هدف‌لوریکی، گل‌برداری و طول مدت زمان فصل روش تولید شده‌اند.

- حداکثر عمق ریشه دوایی

پس از حفر پروپیل خاک، حداکثر عمق ریشه‌دوایی با توجه به عمق ریشه‌دوایی اندازه‌گیری شد.

- بارش مؤثر:

بازار مؤثر به آن مقداری از بارندگی گفته می‌شود که به داخل خاک فوذ می‌کند. (عمق 10-15 سانتی‌متری) بارش مؤثر در فصل روش از روی کمک ترمیم CROPWAT محاسبه شد.

رووانب سطحی:

در این تحقیق میزان روانب از روی پیشنهادی سازمان حفاظت خاک آمریکا (SCS) برآورد گردید.

در این روش ارتقاء روانب به صورت زیر محاسبه می‌شود:

\[R = \begin{pmatrix} R_0 & \text{P} \leq 0.25 \\ R_0 + 0.25 & \text{P} > 0.25 \end{pmatrix} \]

\[R = \frac{(P - 0.25)^2}{(P + 0.25)} \]

\[R = 0 \quad \text{P} < 0.25 \quad \text{R ارتقاء بارندگی} \]

\[\text{عامل مرطب به تغییرات آب در سطح زمین که مقدار آن CN} = \frac{1000 - CN}{10} \]

برابر است: با

\[\text{در این مullah CN شماره متوسطی مرطب به مقدار CN.} \]

\[\text{در روش اصلی اثبات اندام تولب خاک اپرود رگیدی رطوبت خاک (S) مرطب به تغییرات آب موجود در خاک با کمک فرمول زیر محاسبه می‌شود:} \]

\[S = \frac{S_{max} \times (UL - Sm)}{UL} \]

\[\text{که در آن Sm مقدار آب موجود در خاک ناحیه ریشه قبل از بارندگی محدود بالایی عرض ذخیره خاک در ناحیه ریشه UL است که معمولاً برابر مقدار رطوبت در عرض ذخیره ریشه Gرفته می‌شود.} \]

\[S_{max} = \text{میزان حداکثر اندازه S با شرایط رطوبتi \text{N با استفاده از معادله SCS محاسبه می‌شود:} \]

\[S_{max} = \frac{25400}{(254 + CN)} \]
نتایج میزان تولید علوفه

توالید علوفه گونه‌های مختلف (قاب استفاده برای دام) بر حسب درجه خوشخوراکی در شکل 2 آمده است. بر این اساس کمترین تولید مربوط به توالید گونه‌های خوشخوراک کلاس II (پتولو توسط متوسط گرم بر هکتار) و بیشترین تولید مربوط به گیاهان خوشخوراک کلاس III (پتولو توسط متوسط 145/5 کیلو گرم بر هکتار) بوده است.

نتایج آزمایشات فیزیکی خاک منطقه مورد طالعه

شاخص‌های فیزیکی خاک منطقه مورد طالعه باعث شده که سنجش خاک به‌طور کلی مشخص نشود. این امکان به‌وجود آمد که خاک در افق اول و دوم از صدای منطقه‌ای دراهی وجود داشته. واکنش ویژه‌ای خاک در افق اول و دوم بوده و در اغلب سوم و دوچندان دراهی به‌وجود آمده است.

بر اصطلاح تولید علوفه از طریق داده‌های اقیمی معادله‌ی خطی گزینه‌ای مبنای بر مستقل (پیش‌تری موضوع و داده‌های آفتابی) با تولید علوفه از طریق رگرسیون ساده و چندگانه در جدول 3 آمده است.
<p>	بررسی کارایی مدل تعداد آب در برونود تولید در مدت مرجع ...
جدول 3 - معادله‌ی رسپونسی برونود تولید با استفاده از عوامل اقلیمی در مراتع حوزه شیر کوه	</p>
<table>
<thead>
<tr>
<th>مانع</th>
<th>R</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>بارندگی ساله</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>بارندگی پیشین</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>بارندگی ادبیه‌پشت</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>یاگ‌ها خوش‌خوراک کلاس I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>بارندگی رستن</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>بارندگی پیشین</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>بارندگی ادبیه‌پشت</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>یاگ‌ها خوش‌خوراک کلاس II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>بارندگی قبل روش</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>بارندگی ادبیه‌پشت</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>یاگ‌ها خوش‌خوراک کلاس III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>بارندگی قبل روش</td>
<td>0.80</td>
<td>0.80</td>
</tr>
</tbody>
</table>

مراحل رشد گیاه:
- مرحله نوسعه: 22 روز
- مرحله پوستی: 65 روز
- مرحله اول: 15 روز
- مرحله پایانی: 150 روز

داید های خاکی:
 epilepsy = (2) بر اساس محاسبه برای است تا TAW

\[
\text{TAW} = 69.67 \times 100 / 80 = 87.08 \\
\text{Total available soil moisture (FC-WP)} = 87.08 \text{mm/meter} \\
\text{Maximum infiltration rate} = 172.3 \text{mm/day} \\
\text{Maximum rooting depth} = 80 \text{centimetres} \\
\text{TAM} = (1 - F.M/FC-PWP) \times 100
\]

نتایج عمل‌های ورودی مدل 8.0: مدل بررسی ارتباط بین تولید علوفه و متغیرهای مستقل

- بررسی ارتباط بین تولید علوفه و متغیرهای مستقل نشان داد که تولید علوفه در منطقه مورد مطالعه با متغیرهای مستقل بارش سالانه، بارندگی پیشین (بارندگی قبل روش)، بارندگی پیشین (بارندگی قبل روش + بارندگی سال قبل) و ادبیه‌پشت بیشترین همیثیکی را دارند. به طوری که 8 درصد تغییرات تولید علوفه سالانه را می‌توان با بارندگی ادبیه‌پشت بروند کرد. بررسی رگرسیون مدل و بدون منطقه نشان داد تولید گیاهان خوش‌خوراک کلاس 1، کلاس II و کلاس III به‌ترتیب بیشترین همیثیکی را با بارندگی ادبیه‌پشت، بارندگی قبل روش و بارندگی پیشین دارد. نتایج رگرسیون نشان داد که در منطقه مورد مطالعه، وجود برونود تولید علوفه از طریق مدل تعداد آب و اقلیمی:

\[
\text{Y = 1.69ET}_{\text{act}} + 257.91 \\
\text{مدل برونود تولید علوفه}
\]

 persial = 2012

Conclusion:

- بررسی ارتباط بین تولید علوفه و متغیرهای مستقل نشان داد که تولید علوفه در منطقه مورد مطالعه با متغیرهای مستقل بارش سالانه، بارندگی پیشین (بارندگی قبل روش)، بارندگی پیشین (بارندگی قبل روش + بارندگی سال قبل) و ادبیه‌پشت بیشترین همیثیکی را دارند. به طوری که 8 درصد تغییرات تولید علوفه سالانه را می‌توان با بارندگی ادبیه‌پشت بروند کرد. بررسی رگرسیون مدل و بدون منطقه نشان داد تولید گیاهان خوش‌خوراک کلاس 1، کلاس II و کلاس III به‌ترتیب بیشترین همیثیکی را با بارندگی ادبیه‌پشت، بارندگی قبل روش و بارندگی پیشین دارد. نتایج رگرسیون نشان داد که در منطقه مورد مطالعه، وجود برونود تولید علوفه از طریق مدل تعداد آب و اقلیمی:

\[
\text{Y = 1.69ET}_{\text{act}} + 257.91 \\
\text{مدل برونود تولید علوفه}
\]

Conclusion:

- بررسی ارتباط بین تولید علوفه و متغیرهای مستقل نشان داد که تولید علوفه در منطقه مورد مطالعه با متغیرهای مستقل بارش سالانه، بارندگی پیشین (بارندگی قبل روش)، بارندگی پیشین (بارندگی قبل روش + بارندگی سال قبل) و ادبیه‌پشت بیشترین همیثیکی را دارند. به طوری که 8 درصد تغییرات تولید علوفه سالانه را می‌توان با بارندگی ادبیه‌پشت بروند
تجربه علمی پژوهشی مرتع، سال دوازدهم/شماره چهارم/زمستان ۱۳۹۷

جدول ۴ - تابیت و تعرق مرتع، پتانسیل و واقعی و ضریب رویشگاهی و برآورد تولید در مرتع جوزه شیرکوه

<table>
<thead>
<tr>
<th>باردلگی مواد</th>
<th>ضریب رویشگاهی</th>
<th>خطا (SEOE)</th>
<th>رشته میانگین همبستگی (MBE)</th>
<th>اختلاف (RMSE)</th>
<th>میانگین گونه</th>
<th>برآورد تولید</th>
<th>واقعی (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸۲/۲۱</td>
<td>۲/۱۷</td>
<td>۱۵/۸</td>
<td>۳/۷۸</td>
<td>۳/۰۴</td>
<td>۲/۳۳</td>
<td>۲/۶۶</td>
<td>۲/۳۳</td>
</tr>
<tr>
<td>۹۳/۶</td>
<td>۱/۱۴</td>
<td>۳/۹۴</td>
<td>۷/۴۵</td>
<td>۷/۰۷</td>
<td>۳/۴۳</td>
<td>۲/۴۹</td>
<td>۲/۴۹</td>
</tr>
<tr>
<td>۹۳/۷</td>
<td>۲/۴۱</td>
<td>۳/۸</td>
<td>۳/۸۹</td>
<td>۳/۸۹</td>
<td>۳/۸۹</td>
<td>۳/۸۹</td>
<td>۳/۸۹</td>
</tr>
<tr>
<td>۹۶/۱</td>
<td>۱/۱۳</td>
<td>۲/۳۴</td>
<td>۱/۳</td>
<td>۱/۳</td>
<td>۱/۳</td>
<td>۱/۳</td>
<td>۱/۳</td>
</tr>
<tr>
<td>۱۳۳/۷</td>
<td>۱/۱۹</td>
<td>۲/۸</td>
<td>۲/۸</td>
<td>۵۲/۹</td>
<td>۵۲/۹</td>
<td>۵۲/۹</td>
<td>۵۲/۹</td>
</tr>
</tbody>
</table>

ارتباط بین تابیت و تعرق علفه سالانه به عنوان متغیر وابسته و تابیت و تعرق واقعی به عنوان متغیر مستقل نشان داد که تابیت و تعرق واقعی (ETa) از تغییرات تولید علفه سالانه را توجیه می‌کند. برآورد درصد تولید علفه به کمک مدل تعادل آب و اقلیم در جدول ۱ امده است. بر این اساس میانگین تولید علفه منطقه مورد نظر ۳۱۶/۹/۲ کیلوگرم در هکتار برآورد شد.

بن شاخص رویشگاهی (ETa/ETp) و تولید علفه سالانه ارتباط معنی‌داری مشاهده شد. به طوری که یک سال شاخص می‌تواند ۳۳ درصد از تغییرات تولید سالانه را برآورد کند (شکل ۳).

بر اساس آزمایش عملکرد مدل برآوردی بهترین روش تولید در این منطقه، استفاده از تابیت و تعرق می‌باشد (جدول ۵ و ۶). سال‌ها سوامی یا بزرگتر از این مقدار است (جدول ۴).
بحث و نتیجه گیری:
تولید علوفه در اکوسیستم‌های مرطوب متأثر از عوامل زندگی (دام و غیر زندگی، قلبی، خاک، بیورگرافی و ...) می‌باشد. بنابراین برای مدل‌برداری درست از این اکوسیستم‌ها، تشخیص و جداسازی این عوامل ضروری است. داده‌های دست‌آمده از اندازه‌گیری‌های میدانی در منطقه مورد مطالعه نشان داد که تغییرات میزان رشد گیاهان کاهش یافته است. کاهش پوشش گیاهی و تولید مصرف ماهواره ذکر دارد که این نتایج، دلیل این نمایه‌سازی آب در پوشش گیاهی مقطعه مورد مطالعه است. تغییرات سال به سال بارندگی‌ها، میزان بارش پوشش گیاهی و عملکرد آن را تحت تأثیر قرار داده و در سال‌های خشک میزان تولید کاهش یافته است. کاهش پوشش گیاهی و تولید در اثر بارندگی توسط محققین زیان‌ها و گزارش شده است (12 و 13). مطالعه تحلیل‌های ذکر شده در منطقه مورد مطالعه نشان داد که بارندگی بک حاصل محصول کندن رشد و تولید علوفه محسوب می‌شود. زیرا میزان بیشتر و تغییر متسانسب با بارندگی نیست و میزان بیشتر و تغییر مبتکر می‌باشد از این است و میزان همبستگی این بین میزان بیشتر و تغییر واقع وجود داشته. نتایج نشان داد که در مراتب مورد مطالعه، در سال‌های نمونه‌برداری، نظیر زیست در دمای، ساعت افتتاحی و سرعت باد تغییرات چندانی وجود ندارد. در بررسی میزان بارندگی سالانه بارندگی و توزیع تأثیر و فصل آن از سالی به سال پیگیری در نوسان است. بررسی روابط همبستگی نشان داد که این اکوسیستم‌ها یا مطالعه دارد. همچنین میزان کل و پراکنش بارندگی در طی سال بر تولید علوفه مورد مطالعه تاثیر واقع کرده است. نتایج ذکر شده در تحقیقات دیگران بر اثر گزارش شده است (4 و 6). مطالعه اعتبار و روابط ورود و دیده‌شدن بین دو عوامل مطرح شده بود که کل تولید علوفه سالانه نشان داد که از بین عوامل مورد

جدول 4- ارزیابی مدل‌ها به مکم شاخص آموز در مراتب جوده شرکت کرده‌اند (میزان، رتبه، واریانس)

<table>
<thead>
<tr>
<th>پارامتر استفاده در مدل</th>
<th>رتبه بندی</th>
<th>جمع امتیاز</th>
<th>تیپ</th>
<th>نتیجه تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

بررسی کارایی مدل تعادل آب در بارندگی تولید در مدت مرجع ...
با تشکر

References

