Decrease of memory retention in a parasitic wasp: An effect of host manipulation by Wolbachia?

Article in Insect Science - April 2016
DOI: 10.1111/1744-7917.12348

CITATIONS
3

READS
289

6 authors, including:

Hossein kishani farahani
University of Tehran
21 PUBLICATIONS 76 CITATIONS

Ahmad Ashouri
University of Tehran
67 PUBLICATIONS 493 CITATIONS

Seyed Goldansaz
University of Tehran
38 PUBLICATIONS 278 CITATIONS

Jean-Sébastien Pierre
Université de Rennes 1
122 PUBLICATIONS 2,031 CITATIONS

Some of the authors of this publication are also working on these related projects:

proximal decisions, ultimate consequences View project

Chemical Ecology of Moths View project
Decrease of memory retention in a parasitic wasp: an effect of host manipulation by *Wolbachia*?

Hossein Kishani Farahani¹, Ahmad Ashouri¹, Seyed Hossein Goldansaz¹, Martin S. Shapiro², Jean-Sebastien Pierre³ and Joan van Baaren³

¹Faculty of Agriculture and Natural Resources, Department of Plant Protection, University of Tehran, Karaj, Iran; ²Department of Psychology, California State University, Fresno, USA and ³UMR-CNRS 6553 EcoBio, University of Rennes 1, Avenue du Général Leclerc, Campus de Beaulieu, 35042 Rennes Cedex, France

Abstract Several factors, such as cold exposure, aging, the number of experiences and viral infection, have been shown to affect learning ability in different organisms. *Wolbachia* has been found worldwide as an arthropod parasite/mutualist symbiont in a wide range of species, including insects. Differing effects have been identified on physiology and behavior by *Wolbachia*. However, the effect of *Wolbachia* infection on the learning ability of their host had never previously been studied. The current study carried out to compare learning ability and memory duration in 2 strains of the parasitoid *Trichogramma brassicae*: 1 uninfected and 1 infected by *Wolbachia*. Both strains were able to associate the novel odors with the reward of an oviposition into a host egg. However, the percentage of females that responded to the experimental design and displayed an ability to learn in these conditions was higher in the uninfected strain. Memory duration was longer in uninfected wasps (23.8 and 21.4 h after conditioning with peppermint and lemon, respectively) than in infected wasps (18.9 and 16.2 h after conditioning with peppermint and lemon, respectively). Memory retention increased in response to the number of conditioning sessions in both strains, but memory retention was always shorter in the infected wasps than in the uninfected ones. *Wolbachia* infection may select for reduced memory retention because shorter memory induces infected wasps to disperse in new environments and avoid competition with uninfected wasps by forgetting cues related to previously visited environments, thus increasing transmission of *Wolbachia* in new environments.

Key words associative learning; memory duration; spacing learning; *Trichogramma brassicae*; *Wolbachia* infection

Introduction

Learning is widespread throughout the animal kingdom and plays a central role in adapting to local spatial and temporal environmental conditions (Ardiel & Rankin, 2010; Pravosudov & Smulders, 2010; Mery, 2013). Learning occurs throughout an animal’s lifetime, impacting all aspects of life, for example, from searching for a mate, locating and choosing resources, and identifying predators or conspecifics (van Baaren et al., 2005; Dukas, 2008a, 2013; Giunti et al., 2015). The acquisition of information plays a critical role in predicting future conditions and therefore needs to be stored and retrieved in the memory.

Although it is generally assumed that learning is beneficial, direct measurements of the benefits of learning and memory in terms of fitness reveal that learning and memory may also be costly (Dukas & Bernays, 2000; Dukas, 2008b; Raine & Chittka, 2008). Tradeoffs can
therefore be expected between the importance of memory for fitness gains and the energy consumed for the production, consolidation, or retention of memory. In various species, the retention of memory ranges from a few seconds to several years (Rankin et al., 1990; Portavella et al., 2004; Giurfa, 2007; Giurfa & Sandoz, 2012; Bruck, 2013). This duration is determined by numerous factors such as the number of training sessions (Toppino & Bloom, 2002), diet (Suzuki et al., 1998; Petursdotir et al., 2008), aging (Gallagher & Rapp, 1997; Page & Peng, 2001; Schiae et al., 2004; Weiler et al., 2008; Bartolo et al., 2010), stress (Nishio et al., 2001; Shors, 2004), reward intensity and value (Adcock et al., 2006; Hoedjes et al., 2010; Kruidhof et al., 2012), or cold exposure (van Baaren et al., 2006). External biotic factors such as viruses, bacteria, and fungi can also affect the learning ability of animals. The influence of parasitic infections on cognitive functions has undergone considerable study in vertebrates (Kavaliers & Colwell, 1995; Kavaliers et al., 1995; Braithwaite et al., 1998; Cox & Holland, 2001), but has received less attention in the invertebrates (Gegear et al., 2006; Iqbal & Mueller, 2007; Kralj et al., 2007). However, in invertebrates, parasitic infections can have detrimental effects on cognition. For example, the use of floral information was impaired in bumblebees (Bombus impatiens Cresson [Hymenoptera: Apidae]) infected with the gut protozoan parasite Crithidia bombi Lipa and Triggiani (Kinetoplastida: Trypanosomatidae) (Gegear et al., 2006). In addition, adult honey bees (Apis mellifera L. [Hymenoptera: Apidae]) infected with Varroa destructor Anderson and Trueman (Parasitiformes: Varroidae) displayed a reduced learning capacity (Kralj et al., 2007) and lower rates of return to their colony, possibly due to a loss of learning and cognition (Kralj & Fuchs, 2006).

The number of learning experiences during an animal's lifetime may affect memory duration (Roitberg, 1993; Pearce, 2008). A range of animals have been studied (Apis mellifera, Drosophila, the marine mollusks Aplysia and Hermisenda, rats and rabbits) with regard to the effects of repeated experience on memory formation (Carew et al., 1972; Fanselow & Tighe, 1988; Tully et al., 1994; Spieler & Balota, 1996; Kogan et al., 1997; Hermite et al., 1999; Muzio et al., 1999; Beck et al., 2000; Wu et al., 2001). Honeybees (Apis mellifera) have been successfully used to describe the dynamics of memory formation after single- or multiple-trial appetitive learning both in color learning by free-flying bees and in olfactory proboscis extension conditioning (Menzel & Müller, 1996; Menzel, 1999; Giurfa, 2007; Giurfa & Sandoz, 2012), indicating that a consolidation process occurs within a few minutes after learning. In all cases, multiple learning trials facilitate memory consolidation into long-lasting memories extending over 1 or several days.

Wolbachia is an α-proteobacteria living as an obligatory endosymbiont (Taylor & Hoerauf, 1999) and has been found in numerous arthropod species, including spiders, terrestrial isopods, such as filarial nematodes, mites, and insects (Goodacre et al., 2006; Werren et al., 2008; Cordaux et al., 2012). In arthropods, Wolbachia has evolved a large number of strategies to manipulate host reproduction including parthenogenesis induction, feminization, and male killing to enhance its transmission (Werren et al., 2008). Up to 10% of species of parasitoids belonging to the Trichogramma genus are known to be infected with Wolbachia in which it induced thletytokous forms (Poorjavad et al., 2012). Species belonging to the Trichogramma genus are endoparasitoids, and most species are associated with eggs of Lepidoptera, although some can also attack dipteran, coleopteran, and symphytan eggs (Hoffmann et al., 1995; Pinto, 1998b; Mansfield & Mills, 2002). Trichogramma brassicae (Westwood) is a biological control agent that is widely used against various pest species. In nature, 1 uninfected and 1 infected strain of T. brassicae coexist with the infected strain only producing female offspring (Farrokhi et al., 2010; Poorjavad et al., 2012).

Most of the studies have focused on the effects of Wolbachia infection on arthropod traits such as fecundity, longevity, adult size, parasitism rates, and the rate of emergence of Wolbachia-infected wasps (Hohmann et al., 2001; Grenier & De Clercq, 2003; Miura & Tagami, 2004). Wolbachia affects several life history traits in some species, either in a way that increases its transmission (Silva et al., 2000; Hohmann et al., 2001; Zchori-Fein et al., 2001; Panteleev et al., 2007) or negatively due to side-effects of Wolbachia infection (Fialho & Stevens, 2000; Weeks et al., 2007). In the strains studied in this paper, we have shown that Wolbachia infection can impair the decision-making process during patch exploitation, potentially increasing transmission, but at the expense of a decrease of fitness of the infected individuals (Kishani Farahani et al., 2015). Here, we investigated the influence of Wolbachia infection on 3 experience-dependent behaviors: (i) the ability to learn; (ii) the ability to retain memory; and (iii) the effect of additional experience on memory retention. The main methodology is a Pavlovian conditioning assay in which female parasitic wasps associate the reward (a host) with an odor, using a flight chamber to observe the response of T. brassicae after conditioning.
Materials and methods

Parasitoids

In this paper, we compare 2 strains of *T. brassicae*: 1 that is *Wolbachia* infected and 1 that is not (uninfected). Both strains came from cultures maintained by the Biological Control Research Department (BCRD) of the Iranian Research Institute of Plant Protection (IRIPP). The original source of these parasitoids was collected from north Iran (Baboulsar Region, South of Caspian Sea) in the same fields in 2012. The current study was conducted on two naturally infected and uninfected wasp populations. It has been shown that these strains have the same genetic background and thus all observed difference will be due to *Wolbachia* prevalence (Kishani Farahani et al., 2015). In many comparative studies investigating the effects of *Wolbachia* between strains, uninfected strains are produced via antibiotic treatment to an infected strain. However, there is evidence to suggest that such antibiotic treatment may have negative effects on *Wolbachia* treated arthropods (Dedeine et al., 2001; Timmermans & Ellers, 2009) impacting both physiology and behavior. As such, the possibility that observed differences are due to a negative effect of antibiotic treatment could not be ruled out.

Genetic similarity was performed based on the size of the nuclear ribosomal DNA (nrDNA) internal transcribed spacer 2 (ITS-2) region amplified through PCR. The sequences were aligned and then subjected to a maximum parsimony analysis (with MEGA5 software), with heuristic search and TBR branch-swapping algorithm, in order to phylogenetically assess the identification and common origin of our strains (Kishani Farahani et al., 2015).

In our infected strain, *Wolbachia* prevalence was determined in female wasps which produced only female offspring (Huigens & Stouthamer, 2003). *Wolbachia* presence was verified by a PCR method based on the *Wolbachia* surface protein (wsp) (81F/691R primers; Braig et al., 1998). PCR-reactions were performed as described for *Trichogramma* species identification with the following 2 modifications: (1) the primers used to amplify the wsp region were 5′-TGGTCCAATAAGGTGATGAAGAAAC-3′ (forward) and 5′-AAAAATTTAAAGCTACTCCA-3’ (reverse), and (2) the cycling program was: 3 min at 94 °C, 40 cycles of 1 min at 94 °C, 1 min at 50 °C, and 1 min at 72 °C, followed by 5 min at 72 °C after the last cycle (Braig et al., 1998). The *Wolbachia* infected line was monitored in the following experiments for both infected and uninfected wasps. Eggs were obtained from a culture maintained at the Insectary and Quarantine Facility, University of Tehran. The culture was reared at 25 ± 1 °C on wheat flour and yeast (5%). About 20 mated female moths were kept in glass containers (500 mL) to provide eggs and eggs were collected daily to ensure that living eggs used in the experiments were no more than 24 h old. Prior to use in experiments, wasps were reared for 15 generations on *E. kuehniella*.

Flight chamber

The flight chamber used in the experiments was similar to that previously described (Yong et al., 2007) with some modifications of the structure (Fig. 1). Air was driven through the main tunnel chamber (200 cm × 50 cm × 50 cm, l × w × h) by a fan located at the upwind end, and extracted outside by a fume hood at the downwind end. A smaller chamber (50 cm × 20 cm × 20 cm, l × w × h), centered within the main chamber and open at both the upwind and downwind end, served as the experimental arena. The walls of the main chamber and experimental arena were made of transparent acrylic material. All flight responses were tested at 25 °C, 50% RH, and a light intensity of 2000 lux.

In order to isolate parasitoid females for our experiments, small squares from egg cards (eggs were glued on cards [1 cm × 5 cm] with 10% honey solution) were placed into emergence canisters and kept in incubators at 25 ± 1 °C, 16 L : 8 D and 50% ± 5% RH. Emergence canisters consisted of closed cardboard cylinders (500 mL, 63 mm × 161 mm) with a glass vial (50 mL, 26 mm × 93 mm). Once approximately 20 parasitoids had emerged into a glass vial, they were removed and provided with undiluted honey as a food source. The vials were subsequently closed with a ventilated plastic cap to serve as a holding container until the females were 24 h old.

Preliminary test: test of an innate preference for the odor of peppermint or lemon

To study the innate preference of the wasps toward 1 odor (peppermint and lemon odors were tested) against a filter paper without odor, 50 naïve wasps of each strain were exposed to either the odor of peppermint or the odor of lemon in the wind tunnel and their responses were recorded. To do this, single naïve female wasps were
Fig. 1 Diagram of the wind tunnel. Air was driven through the main tunnel chamber at a speed of 2.5 m/s, peppermint and lemon odor (at least 97% pure). Arrows show the dimension of each part of wind tunnel. To avoid positional effects, after each 5 experiments, the positions of the peppermint and lemon were displaced.

introduced into the flight chamber described above using a 5 mL shell vial. The tested odor was presented on strips of filter paper (1 cm × 2 cm) on which 1 μL of one or other solution (peppermint or lemon) had been placed on one filter paper, and no odor on the second filter paper. Each filter paper was attached to a glass pipette placed vertically on a stand and spaced 10-cm apart. Twenty-five of the 50 wasps underwent this procedure using the peppermint odor (at least 97% pure) and the other 25 underwent the procedure using the lemon odor (at least 97% pure). The responses of the wasps to the odors were observed in the flight tunnel during a flight time of 15 min. Any individual that landed or hovered on an odor site for more than 2 min was recorded as a responder wasp. Females that did not complete a flight or did not fly after 5 min were scored as displaying no response. Preliminary tests revealed that if females alighted for more than 2 min on an odor, they remained on the odor until the end of the 15-min test period. If females failed to fly during the first 5 min, the female would choose neither odor during the experimental duration.

Conditioning

Sixty-five 1-d-old naïve females were exposed to host eggs for 15 min to gain oviposition experience and to avoid the variability in sequence and duration of behavioral events associated with learning from the first host encountered (Mills & Kuhlmann, 2004). As some females died, were lost, or failed to oviposit during the procedure, 60 wasps in vials (2 cm × 10 cm) with 100 host eggs (1-d old eggs glued onto cardboard) were transferred into conditioning tanks (25 cm × 25 cm × 25 cm). The conditioning odor was pumped into the tanks during conditioning at an air speed of 1 m/s. Thirty wasps underwent this conditioning procedure using peppermint odor, and the other 30 underwent it using lemon odor. This procedure was carried out using both uninfected and infected females, and lasted a duration of 2 h.

Experiments

Experiment 1: test of odor preference after conditioning Fifteen minutes after conditioning, females of both strains were placed individually in the flight chamber as described above. The responses of 50 female wasps (randomly selected from amongst the survivors of the 60 originally conditioned), 25 of which had been conditioned on peppermint and 25 conditioned on lemon, were tested for both strains. Females that demonstrated a preference for the conditioned odor (i.e., any individual that landed or hovered on the conditioned odor site for more than 2 min), were scored as having learned to associate this odor (that was perceived as neutral in the preliminary test) with oviposition. The numbers of neutral responses displayed by the wasps were compared to identify the effects of Wolbachia on changes in the behavioral response in both strains and the ability of the strains to learn.

Experiment 2: memory duration after one and multiple experiences Memory (retention) was defined as being present when wasps displayed a postconditioning significant preference for the conditioned odor
Memory retention manipulation by Wolbachia

The wasps were conditioned 1–5 times consecutively to show how the number of additional experiences affects memory duration of females. To do this, we divided the total conditioning time (120 min) into 1–5 periods, that is, 120, 60, 40, 30, and 24 min for 1–5 learning sessions, respectively. During each training session, when the wasps were in contact with the odor, they were offered 100 host eggs, as described above, and their responses were tested in the flight tunnel 15 min after the last conditioning. The time interval between successive training sessions was 6 h between the first and second session, and 4 h between each of the other training sessions, so that the wasps were no more than 24 h old after all 5 training sessions. During the intervals between the training sessions, the conditioned wasps were kept at 25 ± 1 °C, 50% ± 5% RH and 16 : 8 L : D and fed with a 10% honey solution. For each test, the responses of 50 wasps of each strain (25 conditioned with peppermint, and 25 with lemon) were recorded. The wasps’ responses were observed every 2 h, so that a total of 11400 wasps were tested (5700 per strain).

Statistical analysis

The innate responses of both strains were compared by χ² tests using SAS software (SAS Institute, 2003). To compare the responses of the 2 strains before and after conditioning we used the Generalized Linear model implemented in the procedure GENMOD of SAS software (ver. 9.1), with the binomial family error and logit link. After this global test, the least square estimates of the proportions in each level were compared by the χ² approximation (an option offered by GENMOD).

The estimation of forgetting relies on a series of observations recorded at different times t₁, t₂, . . . tₖ after conditioning. At each time, a set of n₁ subjects was subjected to a choice test with 3 possible responses: a, b, and c, which correspond respectively to a preference for the odor side, a preference for the opposite side (no odor), and to a null choice, that is, no answer. The time courses of these 3 responses are illustrated. The forgetting of conditioning results in a switch from a high level to a lower level of positive responses, a simultaneous switch from a low level to a high level of null responses, and a switch from a very low to a moderate level of negative responses. A constraint links the 3 responses as aₐ + aₜ + c = n₁ or n₁ = nₐ − nₚ − nₖ. The course of these 3 responses over time can be described by 2 logistic functions written here as probabilities,

\[p_a, p_b, p_c \text{ constrained by } p_a + p_b + p_c = 1: \]

\[p_a = k_a - \frac{k_a - a_a}{1 + e^{t - b_a(t - t_0)}} + a_a, \]

\[p_c = \frac{k_c - a_c}{1 + e^{t - b_c(t - t_0)}} + a_c, \]

\[p_b = 1 - p_a - p_c, \]

where \(k_a \), \(k_c \), and \(a_a \), and \(a_c \), respectively, define the sill and baselines of the logistic models (1) and (2): the baselines are \(a_a \) and \(a_c \), and the seals are \(k_a + a_a \) in model (1), \(k_c + a_c \) in model (2). The term \(k_a + a_a \) estimates the initial state in model (1), and \(a_c \) the final state. It is the inverse in model (2), where \(a_a \) is the initial state and \(k_c + a_c \) the final state.

A supplementary restriction lies in the fact that, as \(t_0 \) represents the mean time to oblivion, that is, the inflection point of the logistics functions; it has to be the same in all 3 equations. The data consist of a vector of 3 counts: \(V = (n_{aa}, n_{bb}, n_{cc}) \) the respective number of subjects responding a, b, or c at time t. An R script was written to do this. The experimental design was a balanced factorial design with 2 factors: first, the type of strain, which had 2 levels (uninfected and infected), and, second, the number of conditioning experiments, which had 5 levels. This design resulted in 10 crossed levels. The model defined by equations (1)–(3) was fitted individually on each set of 10 data. The maximization of the likelihood cannot be fully automatic, and requires an initial guess of the 7 parameters \(k_a, a_a, b_a, k_c, a_c, b_c, l_0 \). This was done by a visual evaluation of each graphic representation of the crossed levels. The maximization of the likelihood provides a starting point for each of the 7 parameters to the algorithm. This was done by considering each graphic representation of the crossed levels (Bouvier & Huet, 1994). As an example, in Figure 4 (uninfected wasp [lemon]), we begin by \(l_0 \) which represents the common inflection point of the 3 curves, initially set to 21. The initial level of response (seal) which represents \(k_a + a_a \) was then set to 20, and \(a_a \), representing the
Table 1 Effects of the strain, conditioning, and interaction of these 2 factors on the wasps’ responses.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Conditioning</th>
<th>Interaction between strain and conditioning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>χ^2</td>
<td>Pr > χ^2</td>
</tr>
<tr>
<td>Peppermint</td>
<td>Neutral</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>Positive</td>
<td>0.48</td>
</tr>
<tr>
<td>Lemon</td>
<td>Neutral</td>
<td>3.33</td>
</tr>
<tr>
<td></td>
<td>Positive</td>
<td>1.43</td>
</tr>
</tbody>
</table>

Note: Significantly different results are shown in bold.

Results

Preliminary test: test for an innate preference for peppermint or lemon odor

Naïve females of both the uninfected ($\chi^2 = 0.13$, $P = 0.93$, df = 2, $n = 50$) and the infected ($\chi^2 = 0.69$, $P = 0.70$, df = 2, $n = 50$) strains displayed no significant preference for the odor of lemon or this of peppermint against the filter paper with no odor or for an absence of a response ($\chi^2 = 0.95$, $P = 0.62$, df = 4, $n = 100$) (Fig. 2).

Experiment 1: test of odor preference after conditioning

For uninfected wasps, the rate of an absence of response decreased significantly after conditioning for both odors, whereas it did not for the infected wasps (GENMOD of SAS, lemon odor: $\chi^2 = 6.36$, $P = 0.0117$, df = 1, $n = 25$; peppermint odor: $\chi^2 = 5.67$, $P = 0.0173$, df = 1, $n = 25$).

Fig. 2 Percentage of recorded responses by naïve uninfected and infected wasps toward peppermint (a) or lemon (b) odor. The error-bars represent the confidence interval on percentage.
Table 2 Values \((t_0) \), standard errors (SE), 95% lower (lower) and upper (upper) confidence interval bound of the estimates of the mid-time oblivion of each type (strain) and each number of experiments (number exp.).

<table>
<thead>
<tr>
<th>Strain</th>
<th>Number of experiences</th>
<th>(t_0)</th>
<th>SE</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peppermint Uninfected</td>
<td>1</td>
<td>23.8</td>
<td>1.4</td>
<td>21.0</td>
<td>26.7</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>18.9</td>
<td>2.4</td>
<td>14.0</td>
<td>23.8</td>
</tr>
<tr>
<td>Lemon Uninfected</td>
<td>1</td>
<td>21.4</td>
<td>0.7</td>
<td>20.0</td>
<td>22.8</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>16.2</td>
<td>0.5</td>
<td>15.1</td>
<td>17.3</td>
</tr>
<tr>
<td>Peppermint Uninfected</td>
<td>2</td>
<td>29.8</td>
<td>1.0</td>
<td>27.7</td>
<td>31.8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>20.8</td>
<td>0.7</td>
<td>19.4</td>
<td>22.2</td>
</tr>
<tr>
<td>Lemon Uninfected</td>
<td>2</td>
<td>28.9</td>
<td>0.7</td>
<td>27.4</td>
<td>30.4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>20.7</td>
<td>1.1</td>
<td>18.4</td>
<td>23.0</td>
</tr>
<tr>
<td>Peppermint Uninfected</td>
<td>3</td>
<td>42.5</td>
<td>2.9</td>
<td>36.8</td>
<td>48.2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>27.1</td>
<td>0.6</td>
<td>25.9</td>
<td>28.4</td>
</tr>
<tr>
<td>Lemon Uninfected</td>
<td>3</td>
<td>42.2</td>
<td>0.7</td>
<td>40.8</td>
<td>43.6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>27.4</td>
<td>0.5</td>
<td>26.4</td>
<td>28.4</td>
</tr>
<tr>
<td>Peppermint Uninfected</td>
<td>4</td>
<td>52.3</td>
<td>0.9</td>
<td>50.4</td>
<td>54.3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>37.0</td>
<td>0.6</td>
<td>35.8</td>
<td>38.2</td>
</tr>
<tr>
<td>Lemon Uninfected</td>
<td>4</td>
<td>51.6</td>
<td>0.8</td>
<td>49.9</td>
<td>53.2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>36.1</td>
<td>0.4</td>
<td>35.2</td>
<td>36.9</td>
</tr>
<tr>
<td>Peppermint Uninfected</td>
<td>5</td>
<td>57.8</td>
<td>0.9</td>
<td>56.0</td>
<td>59.7</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>40.2</td>
<td>1.2</td>
<td>37.8</td>
<td>42.7</td>
</tr>
<tr>
<td>Lemon Uninfected</td>
<td>5</td>
<td>58.2</td>
<td>2.0</td>
<td>54.3</td>
<td>62.2</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>41.2</td>
<td>0.6</td>
<td>40.0</td>
<td>42.4</td>
</tr>
</tbody>
</table>

\(\chi^2 = 0.37, P = 0.5451, df = 1, n = 25 \) for uninfected wasps and lemon odor; \(\chi^2 = 0.1, P = 0.7578, df = 1, n = 25 \) for infected wasps (Table 2, Fig. 3A). For both strains, the rate of positive responses for the odor in the presence of which they had been conditioned increased significantly after conditioning (Proc GENMOD of SAS: lemon odor: \(\chi^2 = 10.59, P = 0.0011, df = 1, n = 25 \); peppermint odor: \(\chi^2 = 9.08, P = 0.0026, df = 1, n = 25 \) for uninfected wasps and lemon odor: \(\chi^2 = 6.18, P = 0.0129, df = 1, n = 25 \); peppermint odor: \(\chi^2 = 7.55, P = 0.006, df = 1, n = 25 \) for infected wasps) (Table 1, Fig. 3B). Infection by \textit{Wolbachia} then has no effect on this parameter. The rate of opposite responses were 1.0% ± 0.5% and 4% ± 1% for uninfected wasps conditioned with peppermint and lemon respectively, while this rate was 8% ± 1% and 12% ± 2% for infected wasps conditioned with peppermint and lemon.

Experiment 2: memory duration after 1 and multiple experiences For a particular strain, the time to oblivion increases with the number of experiences undergone by the animals, and for a defined number of conditioning experiences, the uninfected strain retained the conditioning for longer than the infected strain (Table 2, Fig. 5). A 3-factor variance analysis was done to verify these conclusions. Differences between the types were highly significant \((F_{1.393} = 376.2, P < 0.001) \), as were the number of experiences \((F_{4.393} = 305.3, P < 0.001) \), odor type \((F_{1.393} = 1.004, P < 0.001) \), and their interaction \((F_{1.390} = 0.024, P < 0.001) \). The interaction clearly arises from 2 different levels (1 and 2) of the number of experiences, where the difference between uninfected and infected strains was much lower than at other levels (Fig. 5). Figure 5 also shows that in both strains, memory duration increased in response to the number of learning experiences undergone.

After 1 training session, the memory duration of the uninfected wasps was 23.88 and 21.47 h, on lemon and peppermint, respectively. For infected wasps on the same odors, these values were 18.94 and 16.27 h, respectively. After 5 training sessions, the memory duration was 57.86 and 58.29 h for uninfected wasps on lemon and peppermint, respectively, while it was 40.27 and 41.23 h for infected wasps on the same odors.

Discussion

Our results showed that the infected wasps presented a different behavior and particularly a reduced memory...
duration. After conditioning, the number of no responses decreased significantly for the uninfected wasps, whereas infected wasps showed the same number of no responses before and after conditioning: almost 30% of females of the infected strain never displayed orientation to conditioned odor. However, the memory duration of the infected wasps who were able to learn (i.e., who displayed an orientation towards the conditioned odor), was significantly shortened, regardless of the number of training sessions undergone. As our 2 strains had the same genetic background (Kishani Farahani et al., 2015), their difference in memory retention should be attributed first to the *Wolbachia* infection of the infected strain. This reduced memory duration could result from the manipulation of host behavior by *Wolbachia*, intended to increase *Wolbachia* transmission. Another possibility is that this reduced memory retention is more adaptive for infected wasps for their own fitness or may be due to some other unknown activity of host manipulation by *Wolbachia*.

The infected females, which were able to learn or to use their learning ability, always displayed shorter memory duration, irrespective of how many training sessions they had undergone. It has been predicted that information will only be used if it is useful for predicting the future (Stephens, 1989), and it has been suggested that factors such as the number of particular events, the reliability of the information and the rate of environmental change could all influence the cost–benefit balance of information use (Roitberg et al., 1993; Stephens, 1993; Dukas, 1998). The impact of the utility of the information on the learning ability was elegantly demonstrated by Thiel et al. (2013) who studied 2 strains of *Venturia canescens*, 1 thelytokous and 1 arrhenotokous, but unlike the strains used in our study, their strains live in different habitats and the thelytokous form is not infected by *Wolbachia* (Foray et al., 2013). The thelytokous wasp *V. canescens* lives in habitats with relatively stable host–substrate associations and may encounter high levels of hosts. They showed a preference for a new odor after only a single experience. However, the response faded within 24 h, even when the learning experiences had been spaced out, and the response did not develop into a long-term memory. The arrhenotokous wasp *V. canescens* lives in habitats where hosts are scarce and are likely to be found on a variety of substrates. Unlike the thelytokous wasps, arrhenotokous wasps learned a new odor after a single experience, and the memory lasted more than 24 h. The authors hypothesized that in a habitat in which hosts are encountered relatively frequently, memory that simply covers the interval until the next host encounter might be sufficient, particularly if the cost of constructing this memory can be reduced by not using protein synthesis-dependent memory. This is the first example demonstrating a difference in learning ability between 2 strains of a parasitoid species with different sexuality, but in this case the difference in learning ability seems to be adaptive and linked to the fact that the 2 strains use different habitats.

In our case, it is impossible to separate the effects of infection from the effects of reproductive mode, but both our strains inhabit the same microhabitat, and it is unlikely that the decrease in memory retention could be adaptive for the infected strain, subjected to the same ecological constraints of that of the uninfected strain. If it is not adaptive for the infected wasps to have a decreased memory capacity, 2 hypotheses remain: first, the differences in memory retention could be attributable to host manipulation by *Wolbachia* to increase their transmission or second, such differences could be attributable to a negative by-product of the infection. Concerning the hypothesis of host manipulation, according to Gautestad and Mysterud’s (2013) theoretical model of memory, a
wider dispersal range (i.e., using a larger space) is to be expected for wasps with a shorter memory horizon (duration). This phenomenon could increase the likelihood for a transition to full dispersal, making returns to previously visited environments unlikely. Simulation studies suggest that memory can eventually shape the spatial distribution of the population (Bernstein et al., 1988, 1991). If this applies to our case, the shorter memory duration may induce a greater dispersal rate of infected wasps. This behavior would be useful to the *Wolbachia* as it enables the parasite to contaminate new hosts. Indeed, *Wolbachia* can be transmitted via the superparasitism behavior.
of their hosts by horizontal transmission (i.e., when a female oviposits into a host that has already been parasitized, the contaminated larvae can transmit the *Wolbachia* to the other larvae present in the host; Huigens *et al.*, 2000, 2004). A previous study (Kishani Farahani *et al.*, 2015) has shown that infected females display higher superparasitism rates. As infected wasps produce only female offspring, it would lead to lower genetic diversity among this population in comparison to uninfected populations (Stelzer, 2011; Simon *et al.*, 2003). On the other hand, Huigens *et al.* (2004) showed that competition ability of *Wolbachia* infected wasps was lower than this of sexual wasps. Thus lower memory duration may help infected wasps to disperse in new environments and avoid competition with uninfected wasps by forgetting cues related to previously visited environments. This phenomenon may lead to a larger potential for a transition toward full dispersal, with a small chance of returning to previously visited environments. Simulation studies suggest that learning can eventually shape the spatial distribution of the population (Bernstein *et al.*, 1988, 1991). Lower memory duration allows wasps to disperse in new environments and to mix with other populations, thus leading to greater genetic variations among populations.

We found that memory duration in individuals of both strains increased as a function of the number of experiences. In classical conditioning experiments, conditioning trials that are spaced out over time produce better conditioning than those that are clustered together in time (Terrace *et al.*, 1975; Rescorla & Durlach, 1987; Barnet *et al.*, 1995; Beck *et al.* 2000). Interest in trial spacing has been renewed in recent years, because of claims that the perception of time is central to conditioning. A number of mechanisms can contribute to the trial spacing effects in classical conditioning (Barela, 1999). According to Gallistel and Gibbon (2000), the acquisition of conditioned responses depends on the animal deciding that the rate of reinforcement under the conditioned stimulus (CS) condition is higher than that in the background (Gibbon & Balsam, 1981). By repeating learning events, the animals will be confronted by the stimuli several times, and this leads the animals to overestimate the extent of conditioned stimuli. A higher rate of encountering CS can reveal the importance of this stimulus for the animal, and thus it will be considered to be a high value stimulus in the animal’s life. According to our results, both strains responded positively to repeat conditioning and increased their memory duration. However, in all additional experience tests, memory duration was shorter for the infected wasps than for the uninfected wasps. This may have been due to host manipulation by *Wolbachia*. Lower memory retention can be an adaptive strategy for time limited animals such as parasitoids. In other short-living species such as *Anaphes victus* (Hymenoptera: Mymaridae), for which longevity is around 2 d, it was shown that an associative learning ability allows the females to gain around 2 min at each oviposition and is thus adaptive (Van Baaren & Boivin, 1998). It has been shown that *T. brassicae* survive 3–4 d when provided with food and oviposition (Lundgren & Heimpel, 2003). As memory formation is costly (Burger *et al.*, 2008; Gleiss *et al.*, 2011), we can hypothesize that *Wolbachia* infection prevents the formation of longer-term memory to save energy as an adaptive strategy increasing *Wolbachia* transmission.

Several studies have shown that *Wolbachia* infection can change body organ function and structure, leading to changes in arthropod life style, in their use of hosts, and in their spread throughout the natural environment. Two recent reports have shown that *Wolbachia* infection of *Drosophila melanogaster* increases resistance to 4 types of RNA viruses, some of which are common in both field and laboratory cultures (Brun & Plus, 1978; Ryder *et al.*, 2004; Zambon *et al.*, 2006). Similar protection from natural enemies has sometimes been observed in other arthropods (Gil-Turnes *et al.*, 1989; Gil-Turnes & Fenical, 1992; Haine *et al.*, 2005). This suggests that adaptation to specific conditions may depend on direct selection of symbionts expressing ecologically important traits and simultaneously on indirect selection of the host. The effects of *Wolbachia* infection on memory duration can have a major impact on host ecology by widening the host’s niche, thus allowing the host to exploit particular resources. Endosymbiotic *Wolbachia* bacteria are known to affect the fecundity and dispersal of infected strains (Stouthamer & Luck, 1993; Silva, 1999). Some studies have shown that
Wolbachia can infect the central nervous system of adult and juvenile hosts (Albertson et al., 2013; Strunov et al., 2013). Wolbachia may affect parts of the nervous system, such as the mushroom bodies which make hosts forage in more patches, thus spreading the Wolbachia infection and increasing the probability that genes will be dispersed in the natural environment. However, further research should be done to investigate the effects of Wolbachia infection on the central nervous system or on other organs involved in lifetime information acquisition. Moreover, these behavioral differences could either be due to negative side effects on mobility behavior, or on perception capacity for example, or due to a negative effect on learning ability, although our experiments did not allow us to differentiate. As nothing is known about the possible other heritable symbionts associated with these lines (e.g., Rickettsia, Spiroplasma, Cardinium, etc), we cannot be completely sure that they have no role. However, more research is required to investigate the molecular and neural bases of learning and memory formation, for example, tracking the neurotransmission processes in uninfected and infected T. brassicae brain structures.

Acknowledgments

We would like to thank Akbar Golshani, Pouria Abrun, and Valérie Briand for the technical support provided and also appreciate the assistance of Dr. Lucy Alford and Monica Gosh for their help with the language and writing. This study was financially supported by University of Tehran, but the sponsor had no involvement in the study design, the collection, analysis, or interpretation of data, the writing of the report or in the decision to submit the paper for publication.

Disclosure

The authors declare that they have no conflict of interests.

References

© 2016 Institute of Zoology, Chinese Academy of Sciences, 00, 1–15

Accepted March 13, 2016