AN INTRODUCTION TO ZERO-DIVISOR GRAPHS OF A COMMUTATIVE MULTIPLICATIVE HYPERRING

Zahra SOLTANI¹, Reza AMERI*², Yahya TALEBI-ROSTAMI³

¹Department of Mathematics, University of Mazandaran, Babolsar-IRAN
²School of Mathematics, University of Tehran, Tehran-IRAN; ORCID:0000-0001-5760-1788
³Department of Mathematics, University of Mazandaran, Babolsar-IRAN; ORCID:0000-0003-2311-4628

Received: 01.12.2017 Accepted: 16.04.2018

ABSTRACT

The purpose of this paper is the study of zero-divisor graphs of a commutative multiplicative hyperring, as a generalization of commutative rings. In this regards we consider a commutative multiplicative hyperring $(R,+,o)$, where $(R, +)$ is an abelian group, $(R, +)$ is a semihypergroup and for all $a,b,c \in R$, $a \circ (b + c) \subseteq a \circ b + a \circ c$ and $(a + b) \circ c \subseteq a \circ b + a \circ c$. For $a \in R$ a nonzero element $a \in R$ is said to be a zero-divisor of a, if $0 \in a \circ b$ and the set of zero-divisors of R is denoted by $Z(R)$. We associative to R a zero-divisor graph $\Gamma(R)$, whose vertices of $\Gamma(R)$ are the elements of $Z(R)^* (= Z(R) \setminus \{0\})$ and two distinct vertices of $\Gamma(R)$ are adjacent if they were in $Z(R)$. Finally, we obtain some properties of $\Gamma(R)$ and compare some of its properties to the zero-divisor graph of a classical commutative ring and show that almost all properties of zero-divisor graphs of a commutative ring can be extend to $\Gamma(R)$ while R is a strongly distributive multiplicative hyperring.

Keywords: Multiplicative hyperring, zero-divisor graph, strongly distributive.

1. INTRODUCTION

The concept of the zero-divisor graph of a ring was raised by I. Beck when discussing the coloring of a commutative ring in [3] for the first time. Later D. F. Anderson and P. S. Livingston introduced the zero-divisor graph of a unitary commutative ring R, denoted by $\Gamma(R)$ in [2]. They considered the set of nonzero zero-divisor of as a vertex of $\Gamma(R)$ and assumed that two distinct vertices x and y are adjacent if and only if $xy = 0$. Subsequently, they proved that if R is a finite ring, then $\Gamma(R)$ is finite and connected and any two vertices can be joined by less than four edges. In particular, they were determined when $\Gamma(R)$ is a complete graph and a star graph.

In this paper we create a connection between the concept of the zero-divisor graph of commutative rings and commutative multiplicative hyperrings and generalize some results and properties of zero-divisor graph of a commutative ring to the strongly distributive multiplicative hyperrings.

In this section we will list some definitions, notions and results about commutative hyperrings from some references.
Definition 1.1. Let H be a nonempty set and $P^*(H)$ denotes the set of all of nonempty subsets of H. A hyperoperation o on H is a mapping $o : H \times H \rightarrow P^*(H)$. A nonempty set H together with a family of hyperoperation is a hyperstructure. A hyperstructure (H, o) is a semihypergroup if for all $a, b, c \in H, (a \circ b \circ c) = a \circ b \circ c$ and $(a \circ b) \circ c = a \circ (b \circ c)$. (Associativity axiom). A hyperstructure (H, o) is a quasihypergroup if for all $a \in H$, we have $a \circ o H = H = H \circ a$. In the other words for all $a, b, c \in H$ there exist $x, y \in H$ such that $a \in x \circ o b \cap b \circ o y$ (Reproduction axiom).

Definition 1.2. A hyperstructure (H, o) which is the both semihypergroup and quasihypergroup is called a hypergroup.

Definition 1.3. A general hyperring is an algebraic hyperstructure $(R, +, o)$ that satisfies the following axioms:

1. $(R, +)$ is a hypergroup.
2. (R, o) is a semihypergroup.
3. For all $a, b, c \in R, a \circ (b + c) = a \circ b + a \circ c$ and $(a + b) \circ c = a \circ c + b \circ c$.

A hyperring $(R, +, o)$ is commutative, if the both hyperoperations $+$ and o are commutative. The hyperring R is unitary if there exists an element $u \in R$ such that for all $a \in R, a \circ o u = u \circ o a = \{a\}$.

Definition 1.4. The unitary commutative hyperring R is a hyperfield if for every non-zero element $a \in R$, there exists $b \in R$ such that $u \in a \circ o b$, where u is an unit element of R.

Definition 1.5. A commutative hyperring R is a strong hyperdomain if for all $a, b \in R$, if $0 \in a \circ o b$ with $a \neq 0$ (or $b \neq 0$), then $b = 0$ (or $a = 0$). If $a \circ o b = \{0\}$ implies $a = 0$ or $b = 0$, we will talk about hyperdomain. Obviously, every strong hyperdomain is a hyperdomain and every hyperfield is a strong hyperdomain.

Definition 1.6. A nonempty subset A of a hyperring $(R, +, o)$ is subhyperring of R if $(A, +, o)$ is itself a hyperring, under the restriction of hyperoperation $+$ and o to A.

Definition 1.7. Let A is a subhyperring of a hyperring R. We say that A is a left (right) hyperideal of R if for all $r \in R$ and $a \in A, r \circ o a \in A(a \circ o r \in A)$. A is called a hyperideal if A is both a left and a right hyperideal. A hyperideal P of a commutative hyperring R is said to be prime if $P \neq R$ and for all $a, b \in R, a \circ o b \subseteq P$ implies $a \in P$ or $b \in P$. A hyperideal P of R is said to be strong prime if $a \circ o b \cap P \neq 0$ implies $a \in P$ or $b \in P$.

Definition 1.8. A triple $(R, +, o)$ is multiplicative if $+$ be a classical commutative operation and o be a hyperoperation and following statements hold:

1. $(R, +)$ is an abelian group.
2. (R, o) is a semihypergroup.
3. For all $a, b, c \in R, a \circ (b + c) \subseteq a \circ b + a \circ c$ and $(a + b) \circ c \subseteq a \circ c + b \circ c$.
4. For all $a, b \in R, a \circ o (b - c) = (-a) \circ o b = -(a \circ o b)$.

If in (3) equality hold, then R is a strongly distributive multiplicative hyperring (briefly, we say that R is a $SDMH$).

Definition 1.9. A nonempty subset S of a commutative multiplicative hyperring $(R, +, o)$ is a subhyperring of R if $(S, +, o)$ is a multiplicative hyperring. In other words, S is a subhyperring of R if $(S, +)$ is a subgroup of $(R, +)$ (i.e., $S - S \subseteq S$) and for all $r, s \in S, r \circ o s \subseteq S$.

Definition 1.10. A nonempty subset I of a multiplicative hyperring $(R, +, o)$ is a hyperideal if following axioms hold:

1. $(I, +)$ is a subgroup of $(R, +)$.
2. $(I \circ o R) \cup (R \circ o I) \subseteq I$.

By this definition clearly, every hyperideal is a subhyperring.
Let \((R, +, o)\) be a multiplicative hyperring and \(I\) is a hyperideal of \(R\). Let \(R/I\) be the set of all cosets of \(R\) with restrict to \(I\), \(R/I = \{a + I \mid a \in R\}\). We define a hyperoperation \(*\) on \(R/I\) by
\[
(a + I) * (b + I) = \{c + I \mid c \in a \circ b\}.
\]

Then \((R/I, +, *)\) is a multiplicative hyperring, moreover if \(R\) is a SDMH, so is \(R/I\).

Theorem 1.11. A strongly distributive hyperring \((R, +, o)\) is a ring if and only if there exists \(a, b \in R\), such that \(|a \circ o b| = 1\).

Proof. Corollary 4.1.6 [5]. □

Theorem 1.12. If \(I\) is a hyperideal of a commutative multiplicative hyperring \((R, +, o)\), then for every element \(a + I \in R/I\), we have \(|(a + I) * (0 + I)| = 1\). In other words, if \(R\) is a SDMH, then \(R/I\) is a ring.

Proof. According to Theorem 4.3.5 [5] and Theorem 1.11. □

Theorem 1.13. Let \((R, +, o)\) is a SDMH, then for all \(a, b \in R\), we have:

1. \(0 \in a \circ o 0\) and \(0 \in 0 \circ a\).
2. For all \(x, y \in a \circ o 0, x - y \in a \circ o 0\). (i.e., \(a \circ o 0\) is a subgroup of \(R\).)
3. \(a \circ o b\) is a cosets of \(0 \circ o 0\).
4. \(0 \circ o 0 \circ o 0 = 0 \circ o 0\).
5. For all \(s \in 0 \circ o 0\) and \(r \in R, s \circ o r = 0 \circ o 0\).
6. If \(0 \in a \circ o b\) then \(a \circ o b = 0 \circ o 0\).

Proof. (1) \(0 \circ o a = (a - a) \circ o a = a \circ o a - a \circ o a\). Since \(0 \in a \circ o a - a \circ o a\), then \(0 \in 0 \circ o a\) and similarly \(0 \in a \circ o 0\).

(2) \(a \circ o 0 = a \circ o(0 - 0) = a \circ o 0 - a \circ o 0\). Then for all \(x, y \in a \circ o 0, x - y \in a \circ o 0\).

(3) Let \(c \in a \circ o b\). For all \(x \in a \circ o b\), we have \(x - c \in a \circ o b - a \circ o b = a \circ o (b - b) = a \circ o 0\).

This means that \(x + a \circ o 0 = c + a \circ o 0\). Thus \(a \circ o b = a \circ o (b + 0) = a \circ o b + a \circ o 0 = \cup_{x \in a \circ o b} x + a \circ o 0 = c + a \circ o 0\). Similarly, \(a \circ o b\) is a coset of \(a \circ o 0\). Since \(a \circ o 0\) and \(0 \circ o b\) are cosets of \(0 \circ o 0\), therefore \(a \circ o b\) is a coset of \(0 \circ o 0\).

(4) \(0 \circ o 0 \circ o 0 = 0 \circ o (0 \circ o 0) = \cup_{x \in a \circ o 0} 0 \circ o a = \cup_{a \in \delta o 0} 0 \circ o 0 = 0 \circ o 0\). Similarly, \(a \circ o 0\) is a coset of \(0 \circ o 0\).

(5) Suppose \(s \in 0 \circ o 0\) and \(r \in R\), then \(s \circ o r \subseteq 0 \circ o 0 \circ o r = 0 \circ o (0 \circ o r) = 0 \circ o 0\). Since \(s \circ o r\) is a coset of \(0 \circ o 0\) then \(s \circ o r = 0 \circ o 0\).

(6) Suppose \(0 \in a \circ o b\), then for \(c \in a \circ o b\), we have \(0 \in c + 0 \circ o 0\). Thus there exists \(m \in 0 \circ o 0\) such that \(0 = c + m\). It follow that \(c \in 0 \circ o 0\). Thus \(a \circ o b \subseteq 0 \circ o 0\), and Since \(a \circ o b\) is a coset of \(0 \circ o 0\), therefore \(a \circ o b = 0 \circ o 0\). □

Corollary 1.14. We denote \(0 \circ o 0\) by \(\Omega\), then by Theorem 1.12 clearly if \(R\) is a SDMH, \(\Omega\) is a hyperideal of \(R\). Moreover, \(R/\Omega\) is a ring.

2. THE ZERO-DIVISOR GRAPH OF A SDMH WHEN \(Z(R)^* \cap \Omega = \emptyset\)

In this section, we investigate zero-divisor graph of a strongly distributive multiplicative hyperring and compare their properties with zero-divisor graph of a classical commutative ring.

Let \((R, +, o)\) be a commutative multiplicative hyperring. An element \(0 \neq b\) of \(R\) is said to be a zero-divisor of \(a \in R\), if \(0 \in a \circ o b\). The set of zero-divisors of \(R\) denote by \(Z(R)\). The zero-divisor graph of \(R\) is a graph with elements of \(Z(R)^* = Z(R) \setminus \{0\}\) as vertices and two distinct vertices \(a, b\) are adjacent if and only if \(0 \in a \circ o b\). This graph denote by \(\Gamma(R)\). By definition 1.5, \(R\) is a strongly distributive if and only if \(Z(R) = \{0\}\), and if \(R\) is a strong hyperdomain then \(\Gamma(R) = \emptyset\). An element \(0 \neq a\) of \(R\) is regular if \(a \notin Z(R)\). The set of regular elements of \(R\) denote by \(Reg(R)\).
The zero-divisor graph $\Gamma(R)$ is connected if there exists a path between any two distinct vertices. $\Gamma(R)$ is a complete graph if any two distinct vertices of $\Gamma(R)$ are adjacent. $\Gamma(R)$ is a star graph if there exists an unique vertex of $\Gamma(R)$, which is adjacent to every other vertex.

Let $d(a, b)$ be the length of the shortest path from a to b in $\Gamma(R)$. The diameter of $\Gamma(R)$ is denoted by $diam(\Gamma(R))$, is equal to $\sup\{d(a, b) \mid a, b$ are distinct vertices of $\Gamma(R)\}$. The girth of $\Gamma(R)$ is denoted by $gr((R))$, is defined as the length of the shortest cycle in $\Gamma(R)$. $d(a, b) = \infty$ if there is no such path and $gr(\Gamma(R)) = \infty$ if $\Gamma(R)$ contains no cycles.

In the following statements we will generalize some Theorems and results about zero-divisor graph of a commutative ring that were obtained by D. F. Anderson and P. S. Livingston in [2].

Theorem 2.1. Let $(R, +, o)$ be a $SDMH$. Then $\Gamma(R)$ is finite if and only if either R is finite or a strong hyperdomain. In particular, if $1 \leq |\Gamma(R)| < \infty$, then R is finite and not a hyperfield.

Proof. Suppose that $\Gamma(R) = (Z(R))^*$ is finite and nonempty. Then there are nonzero $a, b \in R$ such that $0 \neq a \circ o b$. Let $A = \{r \in R \mid 0 \circ o r\}$. Then $A \subseteq Z(R)$ is finite and for all $r \in R$, $0 \circ o r \subseteq (a \circ o b) \circ o r = a \circ o (b \circ o r)$ since $0 \neq 0 \circ o r$, therefore $b \circ o r \subseteq A$. Let R be infinite. Since A is finite, then there are $a_1, a_2, \ldots, a_n \in A$ such that $B = \{r \in R \mid b \circ o r \subseteq \{a_1, a_2, \ldots, a_n\}\}$ is infinite. So for all $r, s \in B$, $0 \neq b \circ o (r - s)$. If $\mathcal{C} = \{r \in R \mid 0 \neq b \circ o r\}$, then $\mathcal{C} \subseteq Z(R)$ is infinite, that is a contradiction. Thus R must be finite. Converse is obviously. □

In this part for determining the zero-divisor graph, we suppose that $(R, +, o)$ is a $SDMH$, $\Omega = 0 \circ o 0$ and $Z(R)^* \cap \Omega = \emptyset$. According to Corollary 1.14, R/Ω is a ring. We denoted R/Ω by \bar{R} and the element $a + \Omega$ of R/Ω by \bar{a}. Here, we state a useful theorem that helps us to determine zero-divisor graph and their properties for a $SDMH$.

Theorem 2.2. If R is a $SDMH$ and $Z(R)^* \cap \Omega = \emptyset$. Then there exists an one-to-one correspondence between the set of zero-divisors of R and the set of zero-divisors of ring \bar{R}.

Proof. If $a \in Z(R)$, there exists $0 \neq b \in R$ such that $0 \neq a \circ o b$. According to Theorem 1.13(6), $a \circ o b = \Omega$. Since $Z(R)^* \cap \Omega = \emptyset$, then $\bar{a}, \bar{b} \in \bar{R}$ are nonzero and $\bar{a}\bar{b} = a \circ o b + \Omega = \Omega$. Therefore $\bar{a} \in Z(\bar{R})$. Conversely, suppose $\bar{a} \in Z(\bar{R})$. There exists $\bar{0} \neq \bar{b} \in \bar{R}$ such that $\bar{a}\bar{b} = (a + \Omega) o (b + \Omega) = \Omega$. It means that $a \circ o b + \Omega = \Omega$ and hence $a \circ o b = \Omega$. Since $0 \in \Omega$, hence $0 \in a \circ o b$. Then we have $a \in Z(R)$. This complete the proof. □

This results immediately follow from Theorem 2.2:

Corollary 2.3. If R is a $SDMH$ and $Z(R)^* \cap \Omega = \emptyset$. There exists an one-to-one correspondence between the set of $Reg(R)$ and the set of $Reg(\bar{R})$.

Corollary 2.4. Let R is a $SDMH$ and $Z(R)^* \cap \Omega = \emptyset$. Then $\Gamma(R)$ is isomorphic to $\Gamma(\bar{R})$. In other words, \bar{a} and \bar{b} are adjacent in $\Gamma(\bar{R})$ if and only if a and b are adjacent in $\Gamma(R)$. Hence $\Gamma(\bar{R})$ is connected if and only if $\Gamma(R)$ is so.

Corollary 2.5. As another proof of Theorem 2.1, if R is a $SDMH$ and $Z(R)^* \cap \Omega = \emptyset$, $\Gamma(R)$ is finite if and only if $\Gamma(\bar{R})$ is so. According to Theorem 2.2 [2], $\Gamma(\bar{R})$ is finite if and only if \bar{R} is finite or a domain. Also \bar{R} is finite if and only if R is finite. Moreover, since $Z(R)^* \cap \Omega = \emptyset$, \bar{R} is a domain if and only if R is a strong hyperdomain.

Theorem 2.6. Let R is a $SDMH$ and $Z(R)^* \cap \Omega = \emptyset$. Then $\Gamma(R)$ is connected and $diam(\Gamma(R)) \leq 3$. Moreover, if $\Gamma(R)$ contain a cycle, then $gr(\Gamma(R)) \leq 7$.

Proof. According to Theorem 2.3 [2], $\Gamma(\bar{R})$ is connected and $diam(\Gamma(\bar{R})) \leq 3$, furthermore, if $\Gamma(\bar{R})$ contain a cycle, then $gr(\Gamma(\bar{R})) \leq 2diam(\Gamma(\bar{R})) + 1$. Therefore, according to Theorem 2.2, $\Gamma(\bar{R})$ is so. □

Theorem 2.7. Let R is a finite $SDMH$ and $Z(R)^* \cap \Omega = \emptyset$. If $\Gamma(R)$ contains a cycle then $gr(\Gamma(R)) \leq 4$.
Proof. Since \(R \) is finite if and only if \(\bar{R} = R/\Omega \) is finite and \(\Gamma'(R) \cong \Gamma(\bar{R}) \), if \(\Gamma'(R) \) contains a cycle then \(\Gamma'(\bar{R}) \) is so. By Theorem 2.4 [2], \(gr(\Gamma(R)) \leq 4 \). □

Definition 2.8. A hyperideal \(I \) is an annihilator hyperideal if and only if for all \(a \in I \) and for all \(r \in R, 0 \neq r a a r 0 \in a o r \).

Theorem 2.9. Let \(R \) is a SDMH and \(Z(R)^* \cap \Omega = \emptyset \). There exists a vertex of \(\Gamma(R) \) which is adjacent to every other vertex if and only if either \(R/\Omega \cong Z_2 \times A \), where \(A \) is an integral domain, or \(Z(R) \) is an annihilator hyperideal.

Proof. If \(\Gamma(R) \) contains a vertex which is adjacent with other vertices, then \(\Gamma'(R) \) is so. By Theorem 2.5 [4], we have \(\bar{R} = R/\Omega \cong Z_2 \times A \), where \(A \) is an integral domain, or \(Z(R/\Omega) \) is an annihilator ideal. If \(Z(R/\Omega) \) is an annihilator ideal then for all \(\bar{a} \in Z(R/\Omega) \) and for all \(\bar{r} \in R/\Omega, \bar{a}\bar{r} = a o r + \Omega = \Omega \). Since \(Z(R)^* \cap \Omega = \emptyset \), then \(a o r = \Omega \). Since \(0 \in \Omega \), then \(0 \in a o r \). Therefore \(Z(R) \) is an annihilator hyperideal. □

Theorem 2.10. Let \(R \) is a SDMH and \(Z(R)^* \cap \Omega = \emptyset \). Then \(\Gamma(R) \) is a complete graph if and only if \(\bar{R} \cong Z_2 \times Z_2 \) or \(x o y = \Omega \) for all \(x, y \in Z(R)^* \).

Proof. Let \(\Gamma(R) \) is a complete graph then \(\Gamma'(R) \) is so. According to theorem 2.6 [2], \(\Gamma'(R) \) is complete graph if and only if \(\bar{R} \cong Z_2 \times Z_2 \) or \(\bar{x}\bar{y} = \Omega \), for all \(\bar{x}, \bar{y} \in Z(R)^* \). If \(\bar{x}\bar{y} = \Omega \), according to theorem 2.2, for all \(x, y \in Z(R)^* \), \(0 \in x o y \). Then \(x o y = \Omega \). Converse is obviously. □

Corollary 2.11. Let \(R \) is a SDMH and \(Z(R)^* \cap \Omega = \emptyset \). For \(x, y \in Z(R) \), define \(x \sim y \) if \(0 \in x o y \) or \(x = y \). Then relation \(\sim \) is an equivalence relation if and only if \(\Gamma(R) \) is a complete graph.

3. THE ZERO-DIVISOR GRAPH OF A SDMH WHEN \(Z(R)^* \cap \Omega \neq \emptyset \)

In this section, we suppose that \(R \) is a SDMH and \(Z(R)^* \cap \Omega \neq \emptyset \). According to Theorem 1.13, for every \(a \in Z(R)^* \cap \Omega \), all of elements of \(R \) are adjacent to \(a \). In this case, \(\Gamma(R) \) is connected. But \(\Gamma(R) \) and \(\Gamma'(R) \) are not isomorphic necessarily.

In the following example we prove that if \(R \) is a SDMH and \(Z(R)^* \cap \Omega \neq \emptyset \), \(\Gamma(R) \) is not isomorphic to \(\Gamma(R) \).

Example 3.1. Let \((R, +, \cdot) \) is a ring and \(\emptyset \neq P \) be a prime ideal of ring. We define \(a o_p b = ab + P \), for \(a, b \in R \). Obviously \((R, +, o_p) \) is a SDMH and \(\Omega = 0 o_p 0 = P \). According to Corollary 1.14, \(\bar{R} = R/P = \{ r + P \mid r \in R \} \) is a ring. Let \(a, b \in \Gamma(R) \), are adjacent. Then \(0 \in a o_p b \). Hence \(a o_p b = ab + P = P \) and \(ab \in P \). Since \(P \) is a prime ideal of \(R \), \(a \in P \) or \(b \in P \). Therefore \(a \notin Z(\bar{R})^* \) or \(b \notin Z(\bar{R})^* \).

Theorem 3.2. Let \(R \) is a SDMH and \(Z(R)^* \cap \Omega \neq \emptyset \). Then \(\Gamma(R) \) is connected and \(diam(\Gamma'(R)) \leq 2 \). Moreover, if \(\Gamma(R) \) contains a cycle, then \(gr(\Gamma(R)) \leq 5 \).

Proof. If \(Z(R)^* \cap \Omega \neq \emptyset \), then by theorem 1.13, for all \(a \in Z(R)^* \cap \Omega \), and for all \(b \in R \), \(a o b = \Omega \). Since \(0 \in a o b \), Then \(a \) is adjacent to all of elements of \(R \), and \(\Gamma'(R) \) is connected and \(d(a,b) = 1 \). Now, we suppose that \(a, b \in Z(R)^* \cap \Omega \). If \(0 \in a o b \), obviously \(\Gamma'(R) \) is connected and \(d(a,b) = 1 \). Otherwise, there exist \(x \in Z(R)^* \cap \Omega \) such that \(0 \in a o x \) and \(0 \in x o b \). Then \(a - x - b \) is a path of length 2 and consequently \(\Gamma(R) \) is connected and \(diam(\Gamma'(\bar{R})) \leq 2 \). □

Theorem 3.3. Let \(R \) is a SDMH and \(Z(R)^* \cap \Omega \neq \emptyset \). If \(\Gamma(R) \) contains a cycle, then \(gr(\Gamma(R)) \leq 3 \).

Proof. If \(\Gamma'(R) \) contains a cycle, then there exist \(a, b \in Z(R)^* \cap \Omega \) such that \(0 \in a o b \). On the other hand, for all \(x \in Z(R)^* \cap \Omega \), we have \(0 \in a o x \) and \(0 \in x o b \). Then \(a - x - b - a \) is a triangle. □
By Theorem 3.3, if $Z(R)^* \cap \Omega \neq \emptyset$, we have seen that $\Gamma(R)$ can be a triangle. But $\Gamma(R)$ cannot be an n-gon for any $n \geq 4$.

Theorem 3.4. Let R is a $SDMH$ and $Z(R)^* \cap \Omega \neq \emptyset$. Then there is always at least one vertex of $\Gamma(R)$ which is adjacent to every other vertex.

Proof. According to Theorem 1.13(5). □

Theorem 3.5. Let R is a $SDMH$ and $Z(R)^* \cap \Omega \neq \emptyset$. Then $\Gamma(R)$ is complete if and only if for all $x, y \in Z(R)^* \setminus \Omega$, $x \circ y = \Omega$.

Proof. The proof is obviously. □

Corollary 3.6. Let R is a $SDMH$ and $Z(R)^* \cap \Omega = \emptyset$. For $x, y \in Z(R)$, define $x \sim y$ if $0 \in x \circ y$ or $x = y$. Then relation \sim is an equivalence relation if and only if $\Gamma(R)$ is a complete graph.

REFERENCES

