Frictionless contact of a rigid disk with the face of a penny-shaped crack in a transversely isotropic solid

By: Shahmohamadi, M (Shahmohamadi, M.) [1]; Khojasteh, A (Khojasteh, A.) [2]; Rahimian, M (Rahimian, M.) [1]

INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
Volume: 106 Pages: 274-283
DOI: 10.1016/j.ijsolstr.2016.11.002
Published: FEB 2017

Abstract
In the framework of linear elastic continuum mechanics, an analytical formulation is presented for the axisymmetric axial interaction of a rigid disk in frictionless contact with the face of a penny-shaped crack in a transversely isotropic solid. The problem is reduced to an integral equation and is shown to be degenerated to the formulation of isotropic materials in the literature. As the closed-form solution is not possible, by means of a numerical procedure, the obtained integral equation is solved and the accuracy of numerical procedure and mathematical formulation is verified through comparison with the available results for the relevant analysis in isotropic solids. Through several numerical displays, the effect of material anisotropy on the stiffness of the interacting system and the stress intensity factors at the tip of penny-shaped crack is surveyed. (C) 2016. Elsevier Ltd. All rights reserved.

Keywords
Author Keywords: Penny-shaped crack; Rigid disc; Transversely isotropic; Integral equation; Stress intensity factor
KeyWords Plus: STRESS INTENSITY FACTORS; ELASTIC HALF-SPACE; AXISYMMETRICAL PROBLEMS; CIRCULAR CRACK; DUGDALE CRACK; BASAL CRACK; INCLUSION; MECHANICS; PLATE; INDENTATION

Author Information
Reprint Address: Rahimian, M (reprint author)
Univ Tehran, Coll Engn, Sch Civil Engn, Tehran, Iran.

Addresses:
[1] Univ Tehran, Coll Engn, Sch Civil Engn, Tehran, Iran

E-mail Addresses: mshahm@ut.ac.ir; akhojasteh@ut.ac.ir; rahimian@ut.ac.ir

Publisher
PERGAMON-ELSEVIER SCIENCE LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTOM, OXFORD OX5 1GB, ENGLAND

Categories / Classification
Research Areas: Mechanics
Web of Science Categories: Mechanics

Document Information
Document Type: Article
Language: English
Accession Number: WOS:000392889400023
ISSN: 0020-7683
eISSN: 1879-2146
Other Information
IDS Number: EJOHO
Cited References in Web of Science Core Collection: 65
Times Cited in Web of Science Core Collection: 0