Brittle fracture tests are carried out on Brazilian disk specimens containing a circular hole. The experimental campaign involves two different polymeric materials, Polymethylmethacrylate (PMMA) and general-purpose Polystyrene (GPPS), respectively. Keeping fixed the disk diameter, five different hole sizes are tested for each material sample, thus allowing a full description of the related size effects. The recorded failure stresses are compared with theoretical predictions by the coupled Finite Fracture Mechanics criterion, which is originally implemented for the geometry under investigation by means of analytical relationships for the stress field and the stress intensity factor available in the Literature. The agreement is generally satisfactory, except from very small holes where some nonlinear effects influenced the failure mechanisms.

1. Introduction

Linear elastic notch fracture mechanics (LENFM) was born about twenty years ago as a new branch of the fracture mechanics in which the fracture behaviour of notched engineering components and structures made of linear elastic materials is investigated. By means of the failure criteria in the context of LENFM, it is possible to predict fracture of brittle and quasi-brittle notched structures and prevent catastrophic failures.

From the viewpoint of geometry, notches appear in various shapes among which V-, U- and O-shaped (i.e. circular) notches are the most usual ones. Depending on the notch geometry, e.g. the notch angle, the notch tip radius, etc., the level of stress concentration and particularly that of stress gradient at the notch vicinity is different. As a result, some brittle fracture criteria may be accurate for some specific notch geometries and inaccurate for some others. Therefore, it is essential to evaluate the effectiveness of various brittle fracture criteria for different notch shapes and determine appropriate criteria for each notch shape. Dealing with brittle fracture of notched domains, several failure criteria have been already proposed in the literature and verified by means of extensive experimental results obtained from different materials, specimens and notch shapes. The most active criteria are namely the maximum hoop stress and mean stress criteria [1–4], whose concept have been taken from the well-known Theory of Critical Distances (TCD) [5,6], the Strain Energy Density (SED) criterion [7–10], the Cohesive Zone Model (CZM) [11–13], and Finite Fracture Mechanics (FFM) [14–16]. The great advantage of the approaches in the framework of the TCD and of FFM consists in the possibility to get (semi-) analytical results without loss of accuracy [17], and without recurring to computational efforts, as commonly done through the SED criterion and the CZM.
Furthermore, FFM allows to overcome some drawbacks related to the TCD by coupling the stress requirement to the energy balance, providing, at the same time, a more physically sound approach to failure initiation [15].

A general survey of industrial components and structures indicates that circular notch (i.e. O-shaped notch) is really the most applied notch shape utilized for various purposes such as connecting two or more parts together by means of bolts, screws, rivets etc. In case circular notches are introduced in structures made of brittle or quasi-brittle materials, sudden or at least rapid fracture may take place, leading to heavy damage of the structures. Although for a large number of O-notched structures brittle fracture can be accurately predicted by means of the classic strength of materials, i.e. by using the stress concentration factor, there are several cases for which the level of stress concentration is so high that using the implementation of LENFM criteria for brittle fracture prediction is inevitable [18–20].

In the present research, brittle fracture is investigated experimentally and theoretically in circular notches under pure opening mode. Fracture experiments are carried out on the Brazilian disk (BD) specimen weakened by a central circular hole and made of PMMA or GPPS. With the aim to study the effects of notch size on the fracture behaviour of the specimens, BD samples are fabricated and tested with different hole radii. Experimental results are interpreted in terms of FFM.

With respect to the frame of reference x_y depicted in Fig. 1a, the coupled FFM criterion in its average form, i.e. by coupling an average stress condition with the energy balance [16], can be expressed as:

![Diagram](image)

Fig. 1. BD tests: (a) notched sample geometry; the presence of symmetric cracks of length a stemming from the notch edge is also represented; (b) stress distribution at the centre of the disk for a plain specimen.

List of symbols

- K_I: stress intensity factor
- K_{lc}: fracture toughness
- l_{ch}: $(K_u/\sigma_u)^2$, Irwin’s length
- P_f: failure load
- R: hole radius
- R_0: disk radius
- t: disk thickness
- Δ_c: critical crack advance
- σ: nominal stress
- σ_f: nominal stress at failure
- σ_u: tensile strength

List of abbreviations

- BD: Brazilian disk
- CZM: cohesive zone model
- GPPS: general-purpose polystyrene
- FFM: finite fracture mechanics
- LENFM: linear elastic notch fracture mechanics
- PMMA: polymethyl-methacrylate
- SED: strain energy density
- SIF: stress intensity factor
- TCD: theory of critical distances
where σ_y is the tensile stress along the loading axis y, σ_u is the tensile strength, K_I is the stress intensity factor (SIF) related to a crack of length a stemming from the notch tip, and K_{Ic} is the fracture toughness. According to FFM, fracture takes place through a finite discrete crack advance Δ. Its critical value Δ_c represents one of the two unknowns of system (1) at incipient failure, together with the nominal failure stress σ_y, which is embedded in the functions σ_y and K_I as it will be shown in Section 2. Note that the crack advance is not a mere material function as for other criteria based on a finite distance [3–9], which is proportional to the well-known Irwin’s length $l_{th} = (K_{Ic}/\sigma_y)^2$ (low values of l_{th} correspond to more brittle materials, which generally show a low fracture toughness K_{Ic} and a high tensile strength σ_u). Indeed, according to FFM, Δ_c becomes a structural parameter, depending also on the geometry [15,16], and the loading conditions [21–24].

Finally, let us underline that FFM has been already applied to investigate brittle failure initiation from a circular hole in brittle elements under tensile load, providing good results for composite materials [18,19], and generally mediocre predictions for polymeric materials [20,25,26]. The main novelty of the present work is represented by the geometry under investigation (Fig. 1a), and it concerns both the theoretical part, by means of the FFM implementation (Section2), and the experimental one (Section 3) presenting results from ad-hoc carried out tests. In Section 4 recorded failure stresses and related size effects will be interpreted through FFM. It is important to remark that the present analysis will be developed in the framework of two dimensional linear elasticity, i.e. plastic phenomena will be neglected [27] as well as three dimensional effects, whose importance in the proximity of corner points [28], especially under shear and anti-plane loading conditions [29], has recently been proved.

2. Stress field and SIF function

For the BD samples depicted in Fig. 1a, the stress field $\sigma_y(y)$ can be expressed analytically for a vanishing radius R. Let us observe that for a plain specimen the normal stress σ_y is positive, approximately constant (except from the extreme/contact zones) and equal to σ along the loading axis y [30,31]:

$$\sigma = \frac{P}{\pi R_0 t}$$

where P is the applied load, and R_0 and t are the disk radius and thickness, respectively. On the contrary, the normal stress σ_y is negative along the orthogonal axis x, reaching its minimum -3σ at the centre of the diameter (Fig. 1b). Kirsch solution thus yields:

$$\sigma_y(y) = \sigma \left(\frac{4}{y^2} - 1 + \frac{12}{y^4} \right)$$

Eq. (3) provides ideally a stress concentration factor $\sigma_y(y = R)/\sigma = 6$, meaning that the maximum stress is 6 times higher than the nominal one, i.e. the stress in absence of a hole. Note that the stress concentration factor is equal twice that related to a tensile plate containing a circular hole [20]. Indeed, the accuracy of the stress field (3) for not negligible R/R_0 ratios could be improved by taking the following multiplying factor into account [30,31]:

$$F_{corr} = 1 + \frac{19}{3} \left(\frac{R}{R_0} \right)^2$$

The precision of Eq. (4) has been checked by a finite element analysis for the geometries under investigation (Section 3).

On the other hand, for sufficiently small hole radii, the SIF function related to a crack of length a stemming from the notch can be approximated with the one valid for a circular hole in an infinite plate, where

$$K_I(a) = \sigma \sqrt{\pi a F(s)}$$

with

$$s = \frac{a}{a + R}$$

The shape function F related to the symmetric crack propagation (Fig. 1a) can be written as [32]:

$$F(s) = (1 - s) F_0(s) + s F_1(s)$$

where

$$F_0(s) = 0.5 \left(3 - s \right) \left[1 + 1.243 \left(1 - s \right)^2 \right]$$

$$F_1(s) = 1 + \left(1 - s \right) \left[0.5 + 0.743 \left(1 - s \right)^2 \right]$$
and \(\lambda = -3 \) according to the present geometry (Fig. 1b).

Note that in this case the symmetric crack propagation is supposed to be preferred with respect to an asymmetric one from a theoretical point of view, as it happens for tensile plates [33]. For a deeper insight on symmetric vs. asymmetric crack initiation, see [34,35].

If different (mixed-mode) loading conditions were applied, the crack would initiate from a generic point on the notch edge, and the propagation direction would become another unknown of the problem. In this case, the implementation of FFM would not be easy to achieve, at least through a semi-analytical approach. Indeed, recent interesting FFM studies in this framework were performed on blunt V-notches [36] and open-hole composites plates [37] by means of asymptotic approaches.

3. Experimental investigation

BD tests were carried out in the Fracture Research Laboratory of the University of Tehran on notched disks made of two different brittle materials, PMMA and GPPS, respectively. By referring to the sample geometry depicted in Fig. 1a, the disk diameter \(2R_0 \) was fixed equal to 80 mm, and the thickness \(t \) to 10 mm for PMMA samples, and to 8 mm for GPPS samples. Note that the thickness was supposed large enough to achieve plane strain conditions, taking into account the well-known requirement \(t \geq 2.5l_{ch} \), and that \(l_{ch} \) has generally the order of magnitude of some tenths of a millimetre for the two materials under investigation, e.g. [1,15,16,22–25].

Five different hole sizes were considered with the following dimensions: \(2R = 0.5, 1, 2, 4, \) and 8 mm. Three different samples were fabricated and tested for each hole size at room temperature, for a total of 30 BD tests carried out (Fig. 2). The test speed was set equal to 0.5 mm/min in order to prevent possible instabilities in the compression tests. To fabricate BD samples, first, rectangular plates of PMMA and GPPS were provided. Then, the outer boundary of BD was cut by means of the water-jet cutting machine. An accurate machining process enabled us to get precise hole sizes. Finally, to remove possible stress raisers at the boundaries remained from the cutting processes, they were polished by means of fine abrasive papers.

The fracture was of brittle character, but increasing non-linearities were observed in the force-displacement curves for decreasing hole sizes, becoming evident for \(R = 0.25 \) mm as shown in Fig. 3. Recorded failure loads \(P_f \) for all the tests are reported in Table 1. From these values, the nominal stress at failure \(\sigma_f \) can be evaluated from Eq. (2). On the other hand, from

Fig. 2. BD tested samples: (a) \(2R = 0.5 \) mm (PMMA); (b) \(2R = 1 \) mm (PMMA); (c) \(2R = 2 \) mm (PMMA); (d) \(2R = 4 \) mm (GPPS); (e) \(2R = 8 \) mm (GPPS).
the failure load related to the largest hole size \((R = 4 \text{ mm, Table 1})\), the following relationship provide a good estimate for the tensile strength \(\sigma_u\) \([30,31]\):

\[
\sigma_u = \frac{P_f}{\pi R_0 t} \left(6 + 38 \left(\frac{R}{R_0}\right)^2\right)
\]

(9)

The application of Eq. (9) with \(R = 4 \text{ mm and } R_0 = 40 \text{ mm yields } \sigma_u = 78 \text{ MPa for PMMA, and } \sigma_u = 40 \text{ MPa for GPPS. In the following section, typical values for the fracture toughness will be implemented: } K_c = 1.75 \text{ MPa } \sqrt{\text{m for PMMA (thus, } l_{ch} \approx 0.503 \text{ mm), and } K_c = 0.9 \text{ MPa } \sqrt{\text{m for GPPS (thus, } l_{ch} \approx 0.506 \text{ mm). All the mechanical properties for the two tested materials are summarized in Table 2. Interestingly, the values of } l_{ch} \text{ for the two materials are very close with each other: since the sample geometry was identical (except from the thickness } t\), and since } l_{ch} \text{ estimates the order of magnitude of the crack advance } \Delta_c [15,16], a similar trend for FFM predictions on the two data sets is expected.\n
\begin{table}[h]
\centering
\caption{BD tests: failure loads recorded during experiments on both PMMA and GPPS notched samples.}
\begin{tabular}{cccccc}
\hline
\textbf{PMMA} & \textbf{Hole diameter }2R (mm) & \textbf{Failure load }\(P_f\) (N) & \textbf{Average failure load} (N) & \textbf{GPPS} & \textbf{Hole diameter }2R (mm) & \textbf{Failure load }\(P_f\) (N) & \textbf{Average failure load} (N) \\
\hline
0.5 & 37,150 & 35,660 & 0.5 & 15,930 & 15,100 \\
0.5 & 33,810 & 0.5 & 15,280 \\
0.5 & 36,020 & 0.5 & 14,090 \\
1 & 28,800 & 27,650 & 1 & 12,260 & 12,050 \\
1 & 26,230 & 1 & 11,970 \\
1 & 27,920 & 1 & 11,920 \\
2 & 21,830 & 23,210 & 2 & 9950 & 9360 \\
2 & 24,700 & 2 & 9130 \\
2 & 23,100 & 2 & 9000 \\
4 & 20,250 & 19,420 & 4 & 8070 & 7760 \\
4 & 19,936 & 4 & 7645 \\
4 & 18,074 & 4 & 7565 \\
8 & 14,414 & 15,338 & 8 & 6525 & 6310 \\
8 & 16,168 & 8 & 6220 \\
8 & 15,432 & 8 & 6185 \\
\hline
\end{tabular}
\end{table}
Finally, let us point out that we were not able to establish experimentally if the crack initiation was symmetric (as hypothesized in Section 2, Eqs. (5-8)) or not. On the other hand, the discrepancy between FFM predictions presented in the next section related to either symmetric or asymmetric crack propagations is generally small [33], reaching a maximum of 5% for \(R/l_{ch} = 0.15 \) and then decreasing towards lower values (below 2% for \(R/l_{ch} \geq 2 \)).

4. FFM predictions

The FFM criterion (1) can be now implemented by means of Eqs. (3) and (5). By introducing the function \(f \) related to the integration of the stress field (3) and the function \(g \) related to the integration of the SIF squared (5), some analytical manipulations allow to write the FFM system at failure as:

\[
\begin{align*}
\frac{D_c}{R} \left(\frac{R}{C_0} \right) & - \sqrt{\frac{\Delta}{C_0}} \left(g \left(\frac{R}{C_0} \right) \right) = 0 \\
\sigma_f \left(\frac{R}{C_0} \right) & = \sqrt{\frac{\Delta}{C_0}} \left(f \left(\frac{R}{C_0} \right) \right)^{-1}
\end{align*}
\]

(10)

Once the radius \(R \) and the material properties are fixed, from the former equation in (10) it is possible to get the critical crack advance \(D_c \), which must be then substituted into the latter equation to estimate the failure stress \(\sigma_f \).

Results related to both PMMA and GPPS are reported in Fig. 4, whereas the absolute percentage discrepancy from the average experimental data is shown in Fig. 5a. The size effects are well-caught by FFM, and the trend of theoretical predictions is similar for both materials. As can be seen, FFM results are good for \(R = 4, 2, 1, \) and 0.5 mm, with discrepancies below 13%. On the other hand, the accuracy decreases (discrepancies above 20%, with maximum deviations of about 29% for both materials, Fig. 5b) for the smallest hole, i.e., \(R = 0.25 \) mm. Looking for a possible explanation, it should be noted once again that the force-displacement curves (Fig. 3) become non-linear as the radius \(R \) decreases, and this trend is evident for \(R = 0.25 \) mm. The nonlinear behaviour is related to the high fracture load necessary for failure, activating some alternative damage mechanisms in BD specimens, since tested under remote compression. Note that shearing stresses could be also induced in plain samples (and thus in samples containing very small holes) and sometimes failure starts from loading points with the generation of wedges [31]. As a matter of fact, this nonlinear behaviour is not observed when testing tensile samples containing circular holes with the same radius \(R \) and the same radius to width ratio (work in progress).

It is interesting to point out that the other FFM criterion by Leguillon [13] (which is based on a failure equation similar to (1), but for a point stress requirement instead of the average one) predicts a similar behaviour from a qualitative point of view, although the discrepancy from experimental results increases since the approach leads to higher predictions, e.g. [22–25,38]. Similar arguments apply to other local approaches, such as the mean stress criterion [1,2,39] or the SED criterion [7], whose results are usually very close to those by FFM [23,24]. On the other hand, a general better fitting is obtained through the implementation of the point method [4,5] which always provides the lowest predictions [1,2,38]; in this case, the maximum discrepancy for the smallest radius geometry is nearly 15%.

Table 2

Mechanical properties of the tested materials.

<table>
<thead>
<tr>
<th>Material</th>
<th>Young's modulus (GPa)</th>
<th>Poisson's ratio</th>
<th>Tensile strength (MPa)</th>
<th>Fracture toughness (MPa√m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMMA</td>
<td>2.96</td>
<td>0.38</td>
<td>78</td>
<td>1.75</td>
</tr>
<tr>
<td>GPPS</td>
<td>3.10</td>
<td>0.34</td>
<td>40</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Fig. 4. BD notched samples: failure stress according to FFM (continuous line), and to experimental tests on PMMA (plain circles) and GPPS (black circles).
Finally, Fig. 6 shows the critical crack advance D_c for PMMA samples, which depends on the radius R and on the material properties through l_{ch}. If the correction factor F_{corr} (Eq. (4)) is disregarded, the values of D_c lie between $2/\pi l_{ch}$ for $R/l_{ch} << 1$, and $2/[(\pi (1.12)^2)] l_{ch}$ for $R/l_{ch} >> 1$ [33]. On the other hand, by considering F_{corr} as it was done in our analysis, D_c starts increasing as larger radii are taken into account. Nearly the same curves are obtained for GPPS samples, since the geometry is the same and the value of l_{ch} is approximately identical (Section 3).

5. Conclusions

Size effects related to circular notched samples describe that the strength σ_f of the structure decreases as the hole radius R increases. Particularly, referring to the case of a BD infinite geometry ($R << R_0$), σ_f varies ideally between σ_u (plain/integer sample, $R = 0$) and $\sigma_u/6$ ($R >> l_{ch}$). For finite geometries, some correction factors should be taken into account. In the present manuscript this trend is caught both experimentally, by testing PMMA and GPPS notched samples, and theoretically by means of the coupled FFM criterion. Actually, FFM predictions are accurate but for small hole sizes, where the failure stress is overestimated of more than 20%; this discrepancy is imputable to some nonlinear phenomena (detected in the stress-displacement curves) related to the high failure load and the particular (compressive) loading conditions. The investigation of nonlinearities goes beyond the scope of the paper, but some works are in progress following the analysis presented in [27], where nonlinear effects observed during failure were modelled through the FFM criterion in the regime of small scale yielding.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.engfracmech.2017.11.008.