Comparing face-to-face and electronic word-of-mouth in destination image formation
The case of Iran
Mohammad Reza Jalilvand and Ali Heidari
Faculty of Management, University of Tehran, Tehran, Iran

Abstract
Purpose – The purpose of this paper is to address the following question: which type of word-of-mouth (WOM) communication, face-to-face vs electronic, has the stronger influence on destination image and attitude?
Design/methodology/approach – A multidimensional model is developed with eight constructs. After the validation of measurement scales, hypotheses are contrasted through structural modeling to test the model fit and estimate the model coefficients. The model was tested empirically using a sample of 678 tourists who had experience within the online tourist community, tripadvisor.com. Tourists were required to complete a survey regarding their information search from the virtual sharing platform and face-to-face communications.
Findings – The results of this study suggest that electronic WOM (eWOM) has a more powerful effect on destination image, attitude, and travel intention rather than face-to-face WOM.
Originality/value – This paper is one of the first to develop and empirically test a comparative model for information search behavior, namely, face-to-face WOM vs eWOM, and destination image/attitude in the context of tourism industry.
Keywords Decision making, Tourism, Information strategy, Information exchange
Paper type Research paper

1. Introduction
It has been noted that destination images influence tourists’ attitudes, decision making and subsequent travel behavior. Specifically, studies have shown that a destination image affects several consumer-behavior variables, such as destination choice (Jalilvand et al., 2012), decision making (Doosti et al., 2016), and loyalty (Chi and Qu, 2008). In his review of 142 destination image studies conducted between 1973 and 2000, Pike (2002) showed that tourists’ image perceptions of a destination may influence a wide range of matters including top of mind awareness, length of stay, frequency of visits, and even perceived value of the destination. Supporting Pike’s findings, Stepchenkova and Morrison (2008) found that when potential US travelers lacked objective information about Russian tourism attractions, those with more (less) negative image of Russia as a tour destination were less (more) willing to tour Russia. As a result, the image of a destination is an important factor in determining its popularity with visitors (Hsu et al., 2004) and is therefore crucial to its marketing success.

The literature review of the influences on destination image revealed three major determinants existing in the absence of actual visitation or previous experience: tourism motivations, sociodemographics, and various information sources (Baloglu and McCleary, 1999). In this regard, the latter represent stimulus variables which is the focus of current study whereas motivations and sociodemographics stand for consumer
characteristics. The stimulus variables refer to the amount and diverse nature of information sources to which individuals are exposed, including destination information acquired as a result of having visited the place. The information sources to which the individuals are exposed determine that certain destinations are considered possible alternative choices. Gartner (1993) believes that the image forming process can be regarded as a continuum of different information sources which act independently to form one single image in the mind of the individual. He classifies the different information sources as overt induced, found in conventional advertising in the mass media, from information delivered by the relevant institutions in the destination or by tour operators and wholesalers; covert induced, using celebrities in the destination’s promotion activities or destination reports or articles; autonomous, including mass-media broadcasting news, documentaries, films, television programs, etc., about the place; and organic, involving such people as friends and relatives, giving information about places, based on their own knowledge or experience, whether the information was requested or volunteered. The organic source, known as word-of-mouth (WOM) communications, acts mainly on the beliefs about the atmosphere of the destination. In fact, WOM is considered to be the most believable and truthful communication channel (Jalilvand and Samiei, 2012a).

Previous studies suggested face-to-face WOM is the most influential and predominant resource of information in regards to the formation of image perceptions of a destination (Baloglu and McCleary, 1999; Beeri and Martin, 2004; Hanlan and Kelly, 2004). Furthermore, internet and information technologies provide extensive opportunities for tourists to share their evaluations of destinations online. The web has created the opportunities for electronic WOM (eWOM) communication through electronic media, such as online discussion forums, electronic bulletin board systems, newsgroups, blogs, review sites, and social networking sites (Cheung et al., 2008). eWOM utilizes large scale, anonymous, ephemeral nature of the internet and introduces a new way of capturing, analyzing, interpreting, and managing the influence of communication in hospitality and tourism marketing (Litvin et al., 2008). An increasing number of opinion platforms have been introduced that offer online tourist reviews or ratings. By making it easier for tourists to spread their words, and facilitating access to such opinions, various opinion websites have shown a profound effect on tourist attitude and decisions (Jalilvand and Samiei, 2012b). Some researchers also have focused on the role of eWOM in developing destination image (Jalilvand et al., 2012; Doosti et al., 2016). However, no studies have compared the effects of face-to-face WOM and eWOM on destination image simultaneously.

Additionally, previous literature has revealed that information from strong-tie referral sources is perceived as more influential on the receiver’s decision making than is the information obtained from weak-tie referral sources (Brown and Reingen, 1987). Thus, this study needs to compare the effects of WOM and eWOM on destination image in terms of tie strength effects. It should be noted that prior works on the relationship between face-to-face WOM (e.g. Hanlan and Kelly, 2004) or eWOM (e.g. Jalilvand et al., 2012) and destination image, have considered destination image as an overall construct. In fact, they have not considered the constructs of destination image proposed in the related literature (e.g. Baloglu and Mangaloglu, 2001). As a result, the contribution of this paper is threefold. First, we explicitly examine the simultaneous effects of face-to-face WOM and eWOM on destination image. Second, the study compares the effects of face-to-face WOM and eWOM to determine tie strength. Third, the research contributes to the limited body of knowledge addressing four dimensions of destination image, namely, affective, cognitive, unique, and overall image, proposed by Qu et al. (2011). The rest of this paper is organized as below. First, we provide a review on the literature related to destination image, face-to-face WOM and eWOM.
and eWOM. Second, we introduce the research methodology including hypotheses and methods. Next, we discuss the statistical results. Finally, we summarize the findings and discuss the implications for both research and practice as well as research limitations and future directions.

2. Literature review

2.1 Destination image

Destination image is defined as an individual’s mental representation of knowledge (beliefs), feelings, and overall perception of a particular destination (Fakeye and Crompton, 1991). Destination image plays two important roles in behaviors: to influence the destination choice decision-making process and to condition the after-decision-making behaviors including participation (on-site experience), evaluation (satisfaction), and future behavioral intentions (intention to revisit) (Lee et al., 2005). Destination image is generally interpreted as a compilation of beliefs and impressions based on information processing from various sources over time that result in a mental representation of the attributes and benefits sought of a destination (Gartner, 1993). There are two major approaches in conceptualizing destination image: three-dimensional continuum approach and three-component approach. Initially proposed by Echtner and Ritchie (1991), the first approach suggests attribute-holistic, functional-psychological, and common-unique as the three continuums of image.

The attribute-holistic continuum denotes the perceptions of destination attributes as well as holistic impressions of the place. The functional-psychological continuum represents the distinction between directly measurable, functional components of a destination and intangible, psychological characteristics. The third continuum is indicative of both generic, common features and unique characteristics of the place. The three-component approach represents a more commonly practiced theoretical perspective in destination image studies (Gartner, 1993; Qu et al., 2011). It holds that destination image is composed of cognitive, affective, and unique components.

The cognitive component refers to the beliefs and knowledge a tourist hold of the destination attributes. The affective component is represented by the feelings or emotional responses toward the various features of a place. Unique image is the essence of destination positioning for its ability to differentiate a destination from competitors to get into the consumers’ minds, which simplify information continuously. The three components represent a layered succession in image formation; that is, a tourist forms the cognitive image, based on which he/she develops the affective image and then the unique image (Chen and Phou, 2013; Qu et al., 2011; Gartner, 1993). The latter has provided a framework for our study. This study classified existing research into cognitive image, affective image, unique image, and overall image, as demonstrated in Table I.

<table>
<thead>
<tr>
<th>Image component</th>
<th>Studies and author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affective image</td>
<td>Baloglu (2000), Kim and Richardson (2003), Lucio et al. (2006), Lee and Back (2007), Lee et al. (2008), Qu et al. (2011), Chew and Jahari (2014), Zhang et al. (2014)</td>
</tr>
<tr>
<td>Unique image</td>
<td>Buhals (2000), Mykletun et al. (2001), Greaves and Skinner (2010), Qu et al. (2011)</td>
</tr>
<tr>
<td>Overall image</td>
<td>Bigné et al. (2001), Alcañiz et al. (2005, 2009), Lin et al. (2007), Qu et al. (2011), Zhang et al. (2014), Jalilvand et al. (2012), Doosti et al. (2016)</td>
</tr>
</tbody>
</table>

Table I. Classifications of studies on destination image
2.2 WOM and eWOM in tourism industry

WOM has been defined as the verbal communication behavior related to a certain brand, product, or service among individuals (Arndt, 1967). For those who receive information, those who spread information do not have any commercial intentions. Silverman (2001) defined WOM as the independent communication regarding products and services between consumers through non-marketing channels in which suppliers are not involved. WOM is prompt. Instant questions and replies can be made to provide related and complete reference values (Silverman, 1997). According to Buttle (1998), WOM is not necessarily communicated face-to-face. The contents discussed no longer focuses on brand, product, or service; they also cover organization.

WOM can be created through encouragement or internet transmission. Gelb and Johnson (1995) suggested that information communication and exchange via the internet could also be classified as one type of WOM, called eWOM. Hennig-Thurau et al. (2002) pointed out that the creation of the internet enables customers to collect product information and discussions by surfing web pages. Customers are empowered to share their own experiences, opinions, and related knowledge over a certain topic to create eWOM. It has been found that WOM and eWOM play a significant role for those services that have high-credence qualities, such as tourism and hospitality industry. For example, Litvin et al. (2004) revealed that tourists’ restaurant selections were predominantly influenced by the WOM recommendations of opinion leaders, with surprisingly few decisions based on the influences of more formal media. Jalilvand and Samiei (2012c) found that WOM affects tourists’ decision for traveling to an Islamic destination, Isfahan.

Litvin et al. (2008) described online interpersonal influence, or eWOM, as a potentially cost-effective means for marketing hospitality and tourism, and discussed some of the nascent technological and ethical issues facing marketers as they seek to harness emerging eWOM technologies. Jalilvand and Samiei (2012a) investigated the impact of eWOM on a tourism destination choice, using the theory of planned behavior. They indicated that eWOM is one of the main determinants of tourists’ decisions for traveling a certain destination. Table I summarizes the existing empirical literature that examines the consequences of WOM and eWOM in tourism and hospitality industry (Table II).

Shannon and Weaver (1949) proposed a generic communication model to describe the distinctions between face-to-face WOM and eWOM. According to the model, both face-to-face WOM and eWOM have similar elements of a source, a message, and a receiver. For example, the utility of the face-to-face WOM or eWOM information depends highly on the perceived expertise of the source, as well as the level of trust a receiver has with the online forum. However, dimensional distinctions between face-to-face WOM and eWOM suggest that the same mechanisms of influence may not be attributable to both. Five differences can be identified, namely, source-receiver relationships, channel variety, information solicitation, message retention, and motivations for disclosing information (see Table III).

The first difference between face-to-face WOM and eWOM is source-receiver relationships (Park and Lee, 2009). In WOM, receiver knows the source and has an inherent judgment of his/her expertise (Hennig-Thurau and Walsh, 2003). However, within cyberspace, receiver interprets online content often without knowing information providers (Kietzmann et al., 2011). The second difference is channel variety. The channel is personal in face-to-face WOM. It contains face-to-face or over-the-phone communication with another individual. In eWOM, the linkage is mediated through technology (Hennig-Thurau and Walsh, 2003). The third distinction is the solicitation of information. Solicitation is particularly critical for tourists who make unfamiliar decisions as obtaining more destination information declines the perceived risks of a travel experience. In face-to-face WOM, information is solicited from known sources for a specific purpose. Face-to-face WOM is considered more credible than unsolicited eWOM, due to the pre-selection of
<table>
<thead>
<tr>
<th>Author/s</th>
<th>Sample</th>
<th>Research method</th>
<th>Notable findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jalilvand et al. (2015)</td>
<td>Restaurant customers</td>
<td>SEM</td>
<td>(1) Brand personality and brand equity are found to be the main antecedents of brand preference, (2) brand preference is positively associated with WOM behavior</td>
</tr>
<tr>
<td>Fakharyan et al. (2014)</td>
<td>Hotel customers</td>
<td>Correlation analysis, SEM</td>
<td>(1) Customer-to-customer interactions (CCI) is associated with hotel loyalty and hotel WOM, (2) hotel satisfaction has a significant impact on hotel loyalty and hotel WOM</td>
</tr>
<tr>
<td>Llamero (2014)</td>
<td>Professionals of tourism, cybertourists and bloggers</td>
<td>Semi-structured interviews and observation through think-aloud protocol</td>
<td>Only part of eWOM is granted credibility</td>
</tr>
<tr>
<td>Yeoh et al. (2013)</td>
<td>Medical tourists</td>
<td>Descriptive analysis</td>
<td>The results revealed that most of the tourists were influenced by friends, family, relatives and doctor’s referral</td>
</tr>
<tr>
<td>Jalilvand et al. (2013)</td>
<td>International tourists</td>
<td>SEM</td>
<td>(1) eWOM positively influences tourists’ attitudes toward Islamic destinations and travel intention, (2) tourists’ attitudes toward Islamic destinations are associated with travel intention</td>
</tr>
<tr>
<td>Jalilvand et al. (2012)</td>
<td>International tourists</td>
<td>Correlation analysis, SEM, ANOVA</td>
<td>(1) eWOM positively influences the destination image, tourist attitude and travel intention; (2) destination image and tourist attitude have a significant relationship with intention to travel; (3) destination image positively affects tourist attitude, and (4) the socio-demographic characteristics influence using eWOM, destination image, tourist attitude, and travel intention</td>
</tr>
<tr>
<td>Jalilvand and Samiei (2012a)</td>
<td>International tourists</td>
<td>Correlation analysis, SEM, ANOVA</td>
<td>Online WOM communications have a significant impact on attitudes toward visiting Isfahan, subjective norms, perceived behavioral control, and intention to travel. Travel experience has a significant impact on using eWOM and TPB constructs</td>
</tr>
<tr>
<td>Jalilvand and Samiei (2012c)</td>
<td>International tourists</td>
<td>Regression, ANOVA</td>
<td>WOM affects the decision of tourists for traveling to Isfahan. Second, nationality, gender, purpose of trip, and previous experience of traveling were associated with using WOM among prospective tourists</td>
</tr>
<tr>
<td>Di Pietro et al. (2012)</td>
<td>Social networks users (tourists)</td>
<td>SEM</td>
<td>eWOM communication plays a key role in the perception of usefulness and the attitude toward the use of social network as powerful tool for the choice of tourism destinations; as well as to enjoyment which underlines the role of the fun provided by the social network and represents a stronger predictor for consumer attitude and tourism behavior intention</td>
</tr>
<tr>
<td>Mokhtaran et al. (2014)</td>
<td>Hotel customers and employees</td>
<td>Correlation analysis, SEM</td>
<td>Service climate and service quality are the main determinants of behavioral intentions including positive WOM and revisit intention</td>
</tr>
<tr>
<td>Berezina et al. (2012)</td>
<td>International tourists</td>
<td>Paired sample t-test</td>
<td>A significant impact of the treatments on satisfaction, likelihood of WOM about a hotel, and revisit intentions was found</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Author/s</th>
<th>Sample</th>
<th>Research method</th>
<th>Notable findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeong and Jang (2011)</td>
<td>Restaurant customers</td>
<td>SEM</td>
<td>(1) Restaurants’ food quality positively influences customers to spread positive eWOM, motivated by their desire to help the restaurant; (2) satisfactory restaurant experiences with service employees triggered positive eWOM, motivated by the need to help the restaurant or to express positive feelings; (3) a superior atmosphere in restaurants elicited positive eWOM motivated by a concern for others; and (4) price fairness in restaurants did not drive restaurant customers toward eWOM.</td>
</tr>
<tr>
<td>Zhang et al. (2010)</td>
<td>Restaurant customers</td>
<td>Regression</td>
<td>Consumer-generated ratings about the quality of food, environment and service of restaurants, and the volume of online consumer reviews are positively associated with the online popularity of restaurants; whereas editor reviews have a negative relationship with consumers’ intention to visit a restaurant’s webpage.</td>
</tr>
<tr>
<td>Casaló et al. (2010)</td>
<td>Members of several firm-hosted online travel communities</td>
<td>SEM</td>
<td>The intention to participate in a firm-hosted online travel community has a positive effect on the intention to recommend the host firm.</td>
</tr>
<tr>
<td>Longart (2010)</td>
<td>Restaurant customers</td>
<td>Correlation, ANOVA</td>
<td>Satisfaction with food and drink affect positive WOM (PWOM) significantly, as does an intangible aspect called “the power of context.” In relation to specific triggers of PWOM, surprises given before customers order have a significant impact on PWOM, but not if offered after the main course is served.</td>
</tr>
<tr>
<td>Kim, Gon Kim and Kim (2009)</td>
<td>Hotel customers</td>
<td>SEM</td>
<td>Distributive, procedural, and interactional justice have significant effects on trust, WOM, and revisit intention through recovery satisfaction, recovery satisfaction was found to be an important mediating variable. Improving customer satisfaction, which results in increased return intention and positive WOM endorsement in university foodservice establishments, will in turn not only strengthen customer loyalty, but also improve the dining facility’s reputation and generate greater revenue.</td>
</tr>
<tr>
<td>Kim, Nee Ng and Kim (2009)</td>
<td>Students at a public university</td>
<td>ANOVA, correlation analysis, and regression</td>
<td></td>
</tr>
<tr>
<td>Litvin et al. (2008)</td>
<td>Conceptual</td>
<td>Literature review</td>
<td>(1) Online interpersonal influence or eWOM should be considered as a potentially cost-effective means for marketing hospitality and tourism, (2) marketers need harness emerging eWOM technologies.</td>
</tr>
<tr>
<td>Babin et al. (2005)</td>
<td>Hotel and restaurant customers</td>
<td>SEM</td>
<td>The ability of the consumer service value scale to account for utilitarian and hedonic value, the role of functional and affective service environment components in shaping consumer satisfaction and future patronage intentions and the relative diagnosticity of positive affect. Restaurant selection is predominantly influenced by the WOM recommendations of opinion leaders.</td>
</tr>
<tr>
<td>Litvin et al. (2004)</td>
<td>Restaurant customers</td>
<td>Regression</td>
<td></td>
</tr>
<tr>
<td>Stokes and Lomax (2002)</td>
<td>Hotel customers</td>
<td>Interview</td>
<td>The importance of WOM for hotel industry has been confirmed, but found two sets of dissonance. One was between input WOM types and sources, the other between output WOM content and targets.</td>
</tr>
</tbody>
</table>

Table II
persons with perceived credibility to solicit information from (Gartner, 1993). In eWOM, information may be solicited within online forums and communities in an attempt to achieve more knowledge from a wider pool of friends (Cheung et al., 2009). eWOM solicitation is accompanied by a higher level of risk perceived by tourist (Litvin et al., 2008). The fourth difference is message retention capabilities. In face-to-face WOM, messages would be retained based on the capability to recall prior conversations (Buttle, 1998). However, in eWOM, messages are stored and made more accessible to a wider range of receivers than face-to-face WOM (Steffes and Burgee, 2008). The final difference refers to the motivations for disclosing information. In both face-to-face WOM and eWOM, the disclosure of information happens through providing positive or negative opinions to aid a receiver to make travel decision (Allsop et al., 2007). EWOM can be viewed as a motive for disclosing information to create new friends (Lee and Youn, 2009). With face-to-face WOM, information is exchanged between individuals with some professional, social, or family ties to establish trust in the relationships (Jacobsen and Munar, 2012). The identified differences suggest that face-to-face WOM and eWOM have not the similar influence on destination choice behavior.

3. Research methodology

3.1 Hypotheses

Adopted from the typology of Qu et al. (2011), destination image includes cognitive, affective, and unique image components. Cognitive evaluation refers to beliefs and knowledge about an object whereas affective evaluation refers to feelings about the object (Mackay and Fesenmaier, 2000; Baloglu and McCleary, 1999). According to Echtner and Ritchie (1993), the overall image of a destination should be viewed and measured based on three dimensions of attributes: holistic, functional-psychological, and unique-common characteristics. Uniqueness is particularly important due to its influence on differentiation among similar destinations in the target consumers’ minds. Destinations emphasize a destination’s unique image to be differentiated from competing destinations by consumers. Uniqueness provides a compelling reason why travelers should select a particular destination over alternatives.

Although previous works asserted the influence of both fWOM and eWOM on destination image, however, the image has been considered as overall construct. For example, Baloglu and McCleary (1999) indicated that WOM recommendations from friends and relatives are the most important source in forming touristic images. Morgan et al.’s (2003) New Zealand based research noted that negative WOM can have an overwhelming impact upon a destination’s image, as dissatisfied visitors spread unflattering comments related to their experiences. Beeri and Martin (2004) concurred that WOM was considered the most believable and truthful communication channel, which also significantly influenced the image of the destination. Phillips et al. (2011) believed that good WOM cannot only create

<table>
<thead>
<tr>
<th>Dimensional differences</th>
<th>fWOM</th>
<th>eWOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source-receiver relationships</td>
<td>Known and established</td>
<td>Potentially unknown source and receiver</td>
</tr>
<tr>
<td>Channel variety</td>
<td>Typically through face-to-face or phone</td>
<td>Mediated over technology and across</td>
</tr>
<tr>
<td>Information solicitation</td>
<td>Dependent on known sources and existing</td>
<td>Wider scope for unknown sources and range</td>
</tr>
<tr>
<td></td>
<td>source profile</td>
<td>of source profiles</td>
</tr>
<tr>
<td>Message retention</td>
<td>Based on ability to recall</td>
<td>Representation stored online</td>
</tr>
<tr>
<td>Motivations for disclosing</td>
<td>Assistance in making informed decisions</td>
<td>In addition to decision making, opportunities to socialize</td>
</tr>
<tr>
<td>information</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table III. Differences between fWOM and eWOM
the positive image of the destination but also increase awareness of the destination to people who are not very familiar with the rural area. We expect that face-to-face WOM should be positively related to the formation of cognitive, affective, and unique image. Therefore, we put forward the following hypotheses:

H1. Face-to-face WOM influences an affective image of a tourism destination.

H2. Face-to-face WOM influences a cognitive image of a tourism destination.

H3. Face-to-face WOM influences a unique image of a tourism destination.

In the case of eWOM communication, several studies have analyzed effects of online WOM communication on destination image (Jalilvand et al., 2012; Setiawan, 2014; Doosti et al., 2016). For example, Jalilvand et al. (2012) in their study of 264 international tourists revealed that eWOM positively influences the destination image, tourist attitude, and travel intention. Doosti et al. (2016) revealed that eWOM affects indirectly visit intention through city image and attitude toward the city. Abubakar et al. (2016) employed a sample of 308 customers in Cyprus and suggested the following results: e-referral does influence brand image, eWOM influences brand image, and eWOM and brand image influence purchase intention. Shen et al. (2015) asserted that social network sites (SNS) is increasingly used by tourism organizations and enterprises to shape their destination image. They used content mining methodology to analyze the differences among destination images shaped via SNS through official destination marketing and management organizations and individual consumers. The comparison of the differences in the image of Singapore presented between an official and a private SNS account showed that Singapore does fairly well in official marketing through SNS in China and the development of a fairly complete destination image and influence. Xie (2014) studied the impact of promotional videos, online reviews, and travel notes on destination image changes, and found that the three forms of information significantly changed destination image. Hence, similar to face-to-face WOM, it is expected that eWOM is positively related to the formation of cognitive, affective, and unique image. Hence, this leads to our next hypotheses:

H4. eWOM influences an affective image of a tourism destination.

H5. eWOM influences a cognitive image of a tourism destination.

H6. eWOM influences a unique image of a tourism destination.

Interpersonal influence and WOM are ranked the most important external information sources when a consumer is making a service or tourism purchase decision (Jalilvand and Samiei, 2012c). In a study of Swiss tourists, Beiger and Laesser (2004) found that WOM communication from friends and relatives was the most commonly used information source for travelers before the travel decision making. Jalilvand et al. (2015) suggested that tourists’ restaurant selections are predominantly influenced by the recommendations of friends or relatives and recommendations of staff at a hotel, with surprisingly few decisions being based on the influences of more formal media such as guide books and advertisements in magazines or newspaper. Based on these findings, we propose the following hypothesis:

H7. Face-to-face WOM influences intention to travel a tourism destination.

In the internet era, the effect and distribution of WOM have been further enhanced, as individuals can now make their opinions easily accessible to other internet users. According to another survey with more than 2,000 US adults, between 79 and 87 percent of the readers of online reviews of restaurants, hotels, and travel services reported that the reviews had a
significant influence on their purchase decisions. More importantly, based on the strength of the reviews that they read, 41 percent of restaurant review readers subsequently visited a restaurant, and 40 percent of hotel review readers subsequently stayed at a hotel (ComScore/ The Kelsey Group, 2007). In his study of 216 tourists in Cyprus, Abubakar (2016) found that medical tourists’ eWOM is positively related to travel intention and destination trust. Thus, the following hypothesis is proposed:

H8. eWOM influences intention to travel a tourism destination.

WOM communication is generally acknowledged to play a considerable role in influencing and forming consumer attitudes (Xia and Bechwati, 2008; Bambauer-Sachse and Mangold, 2011). Soderlund and Rosengren (2007) indicate that WOM transmission has an indirect impact on the receiver’s attitude toward the firm through the receiver’s assessment of the senders’ emotions. Jalilvand (2016) compared face-to-face WOM and mass media in affecting tourists’ attitude toward destination. He revealed that face-to-face WOM is the stronger determinants of tourists’ attitude than mass media. Hence, we posit the following hypothesis:

H9. Face-to-face WOM influences tourist attitudes toward a destination.

Llodra-Riera et al. (2015), in a survey of 541 tourists and residents of Mallorca, indicated that different websites, reflecting both supplier- and user-generated content, exert important influences and combine to form an information source construct. Additionally, they showed that users who publish tourist information online value web platforms that offer user-generated content when they seek information about a tourist destination for themselves. Furthermore, Vermeulen and Seegers (2009) conducted an experimental study with 168 participants to determine the impact of online reviews on the attitudes of travelers to hotels, and revealed that exposure to online reviews enhanced hotel awareness, and that positive reviews improved the attitudes of travelers toward hotels. Jalilvand and Samiei (2012a) and Jalilvand et al. (2013) in their study of international tourists found that eWOM is an important source of tourists and significantly affects tourist attitude toward destination. Therefore, we hypothesize the following:

H10. eWOM influences tourist attitudes toward a destination.

Ryan and Gu (2008) emphasized that the image itself is the beginning point of tourist’s expectation, which is eventually a determinant of tourist behaviors. In the tourism literature, it is widely acknowledged that overall image of a destination is influenced by cognitive and affective evaluations (Hosany et al., 2007). Pike (2009) stated that brand associations in destination branding should include cognitive and affective image components. Although it is argued that cognitive and affective image components are hierarchically correlated to form a destination image (Cai et al., 2004), it is still possible that each cognitive and affective brand image component would have unique contributions to the overall image formation. That is, each association would have a different level of impact on the overall image formation (Keller, 2008, p. 59). This study thus presents the next two research hypotheses, which are as follows:

H11. Affective image influences overall image of a destination.

According to Qu et al. (2011), unique image is a construct that envisages the overall image of a destination. Uniqueness provides a compelling reason why travelers should select a particular destination over alternatives. Therefore, the unique image of a destination is critical to establish the overall image in the tourists’ minds. A strong, unique
image would increase the favorability of the overall image toward the destination. Therefore, we expect that:

H13. Unique image influences overall image of a destination.

Previous studies supported that overall image is one of the most important factors to elicit the intention to revisit the same destination (Qu et al., 2011; Alcañiz et al., 2005; Bigné et al., 2001). Bigné et al. (2001) asserted that the overall image of the destination is influential not only on the destination selection process but also on tourist behaviors in general. Thus, it is expected that a visitor with positive overall image, as a total impression of cognitive, affective, and unique images, would be more likely to visit a certain destination. Tan (2016) examined two visitor groups (first-timers and repeaters) who visited Toucheng/Jiaosi, Taiwan. He found that for the two groups, destination image positively influences revisit intention. Tan and Wu (2016) analyzed 493 surveys collected from residents in Taiwan and found that destination image is a significant predictor of behavioral intentions, such as destination choice and visit intention. This leads to the following hypothesis:

H14. Overall image influences intention to travel a tourism destination.

Additionally, it has been indicated that there is a positive relation between destination image and future attitudes, and the possibility of a guest’s, who has a positive image about the destination, visiting there again and recommending the destination to the others increases (Jalilvand et al., 2012). Woomi and Soocheong (2008) also showed that perceived image of a particular destination influences tourist attitude toward tourist destination. Hence, it is expected that:

H15. Overall image influences tourist attitudes toward a destination.

Attitude is an effective predictor of tourist decision for traveling to a certain destination (Jalilvand and Samiei, 2012a, b, c). The intention behind an attitude can affect external behaviors (Lee, 2007). The more favorable the attitude toward the behavior, the stronger will be an individual’s intention to perform the behavior. Um and Crompton (1990) found that attitude is influential in determining whether a potential destination is selected as part of the evoked set and in selecting a final destination. Therefore, we predict:

H16. Tourist attitudes influence intention to travel a tourism destination.

We summarize our overall research model in Figure 1.
3.2 Methods

3.2.1 Data collection. We collected the study data from a web survey of members of an online travel community, consistent with habitual research practices for collecting data online (Bagozzi and Dholakia, 2006). Travel website of TripAdvisor.com accepted to promote the research among its users. Currently TripAdvisor.com covers 450,000 hotels, over 560,000 restaurants, and 90,000 attractions worldwide (Tripadvisor.com, 2015). This travel advice website allows users to interact and provide reviews on restaurants, hotels or local tourist attractions. Potential interviewees clicked into a website with the study questionnaire, and information about the research project. We required that the subject was registered as a member of the online travel community selected. Our non-random data collection method (volunteer sampling) generated 678 valid questionnaires (controlling for atypical cases, repeated responses, and incomplete questionnaires).

There were slightly more male respondents (395 respondents = 58.3 percent) than female ones. In total, 65 percent of respondents were aged less than 35 years old, and 62 percent were single. Among the respondents, 83 percent held a university and higher degree, 68 percent of the respondents were employed. With regard to monthly income, 35 percent of the respondents earned a monthly income of US$1,001-3,000, followed by US$10,000 or below (28.5 percent), US$3,001-5,000 (20.5 percent) and over US$5,000 (16 percent).

3.2.2 Measures. A questionnaire was designed as the survey instrument to collect data for all the constructs in the proposed model. An extensive review of the related literature was carried out to develop a list of attributes generally used to measure affective, cognitive, and unique destination image. Based on the specific characteristics of the research site, the cognitive attributes were extracted from Baloglu and McCleary (1999), Beerli and Martin (2004), Martin and Bosque (2008), and Qu et al. (2011). Accordingly, a set of 13 cognitive attributes for four scales including environment and infrastructure, quality of experiences, and touristic attractions was formed for use in this study. Respondents were asked to rate Iran as a travel destination on each of 13 attributes on a five-point Likert scale, ranging from 1 “strongly disagree” to 5 “strongly agree.” Affective image was captured using Qu et al.’s (2011) four bipolar dimensional affective image scales consisting of Arousing-Sleepy, Pleasant-Unpleasant, Exciting-Gloomy, and Relaxing-Distressing. A five-point semantic-differential scale was used for all four bipolar scales where the positive poles were assigned to larger values: 1 = sleepy and 5 = arousing, 1 = unpleasant and 5 = pleasant, 1 = gloomy and 5 = exciting, and 1 = distressing and 5 = relaxing. In addition, the scale of overall image measurement was adopted and modified from Jalilvand et al. (2012) and Qu et al. (2011).

The respondents were asked to rate their perceptions of overall image of Iran on a five-point scale with: 1 = being very negative and 5 = being very positive, and with 1 = being very non-satisfactory and 5 = being very satisfactory. As with Qu et al. (2011), unique image of Iran as a travel destination was measured to identify the attributes that make Iran unique from rival destinations. A total of eight items were employed with a five-point Likert-type scale (1 = strongly disagree; 5 = strongly agree). Although some of the similar measures were used for capturing cognitive and unique images of Iran, they should be considered as different measures because cognitive image measures the perceptions of the general quality of experiences in Iran as a travel destination (without any comparison with other destinations) while unique image has more focus on comparison of measures between Iran and rival destinations. Attitude was measured by using modified scales developed by Jalilvand and Samiei (2012a). Items included were: 1 = very bad and 5 = very good, 1 = very worthless and 5 = very valuable, and 1 = very unpleasant and 5 = very pleasant. Travel intention was measured with three items. The items including “I predict I will visit Iran in the future,” “I would visit Iran rather than
any other destinations” and “If everything goes as I think, I will plan to visit Iran in the future” were adopted from Doosti et al. (2016).

We used Jalilvand and Samiei’s (2012c) WOM scale, a reliable, valid, and generalized scale to measure WOM behavior with four items: “When I consider traveling, I ask other people face-to-face for opinions and advice,” “I feel more comfortable traveling when I have gotten opinions from people I know face-to-face,” “I need to talk face-to-face to others before I travel,” and “Face-to-face communication with people I know influences my choice of travel.” Finally, eWOM behavior was measured with four items from Jalilvand et al. (2012): “I often read other tourists’ online travel reviews to know what destinations make good impressions on others,” “Online opinions influence my choice of travel,” “I rarely seek online opinions where to travel,” and “If I don’t read tourists’ online travel reviews when I travel to a destination, I worry about my decision.” These items were measured with a five-point Likert-type scale, ranging from 1 = strongly disagree to 5 = strongly agree.

3.2.3 Data analysis. The data analysis was conducted in three stages. First, exploratory factor analysis with SPSS 22.0 was performed to identify the underlying dimensions of cognitive and unique destination image. Second, confirmatory factor analysis was performed to test how well the measured variables represented the constructs, and to ensure the goodness-of-fit for the measurement model. At last, the relationships among destination image constructs, WOM, eWOM, attitude, and travel intention were empirically tested using the structural equation modeling (SEM) technique with AMOS 18.

4. Empirical results

4.1 Dimensionality of cognitive and unique image
Exploratory factor analysis was carried out using the principle component method with varimax rotation to examine the dimensionality of cognitive image and unique image. As recommended by Hair et al. (2010), eigenvalues greater than 1 and factor loadings greater than 0.50 indicated significance. Therefore, items with low factor loadings (< 0.50), high cross loading (> 0.40) or low communality (< 0.40) should be eliminated until a clean and rigid factor structure is obtained (Hair et al., 2010). The result of Bartlett’s test of sphericity for the cognitive destination image scale was significant ($\chi^2 = 3,341.45, p = 0.00$), indicating that nonzero correlation existed. All items of cognitive image scale meet the criteria, and thus were remained for further analyses, yielding a three-factor model with 13 items (Table IV). The factor solution accounted for approximately 60 percent of the total variance extracted, with communalities ranging from 0.56 to 0.73. All factors had relatively high reliability coefficients (i.e. Cronbach’s α), ranging from 0.77 to 0.83. Factors were labeled based on the characteristics of the items underlying each factor, including quality of experiences (five items, $\alpha = 0.83$), tourists attractions (five items, $\alpha = 0.80$), and entertainment and infrastructure (three items, $\alpha = 0.77$).

In a similar manner, the results of exploratory factor analysis from the eight items of unique destination image scale yielded a three-factor solution (Table V), which accounted for 48.2 percent of the total variance. The three factors are natural environment (three items, $\alpha = 0.86$), appealing destination (three items, $\alpha = 0.75$), and local attractions (two items, $\alpha = 0.72$).

4.2 Measurement model
Following the two-step approach proposed by Anderson and Gerbing (1988), CFA with the maximum likelihood estimation method was first conducted to analyze the validity and reliability of the constructs in our conceptual model. The model adequacy was assessed by the fit indices, as suggested by Hair et al. (2010), and a preliminary CFA was conducted. As shown in Table VI, the factor loading of each item was greater than 0.50. The construct
reliability estimates of all the constructs exceeded the critical value of 0.7, and the values for the average variance extracted (AVE) of the eight constructs were well above the suggested value of 0.5. These fit indices indicate the measurement model has good convergent validity.

In addition, discriminant validity was also examined by the estimated correlation between constructs with the variance extracted. An AVE of greater than 0.50 indicates that the validity of both the construct and the individual variables is high. All the constructs meet this conservative test of discriminant validity, as the variance extracted estimates from each construct exceeded the squared correlation between each construct, meaning that each construct was statistically different from the others (see Table VII). Therefore, the measurement model is reliable and meaningful to test the structural relationships among the constructs.
4.3 Structural model and hypotheses testing

A maximum likelihood estimation method was used to test the predicted relationships among the constructs in the proposed conceptual model. The overall model fit indices were $\chi^2 (283) = 840.22$ ($p = 0.00$), $\chi^2/df = 2.96$, less than the criteria value of 3 suggested by Hair et al. (2010). Furthermore, other indicators of goodness-of-fit supported the very good fit of the model (such as GFI = 0.95, AGFI = 0.94, RMR = 0.01, RMSEA = 0.03, RFI = 0.94, NFI = 0.93, IFI = 0.98, and CFI = 0.97). This suggests that the hypothesized model fits the empirical data well. Figure 2 shows the estimated model with the standardized path coefficients.

As shown in Figure 2 and Table VIII, all the hypotheses are supported. Face-to-face WOM is significantly and positively associated with affective image (standardized coefficient = 0.45; critical ratio = 5.25; sig. < 0.001), cognitive image (standardized coefficient = 0.57; critical ratio = 8.83; sig. < 0.001), electronic WOM (eWOM) is significantly and positively associated with affective image (standardized coefficient = 0.57; critical ratio = 8.44; sig. < 0.001), and cognitive image (standardized coefficient = 0.67; critical ratio = 9.66; sig. < 0.001). The results of confirmatory factor analysis are presented in Table VI.

Table VI. The results of confirmatory factor analysis

<table>
<thead>
<tr>
<th>Constructs</th>
<th>Standardized factor loading</th>
<th>Error variance</th>
<th>t-Value</th>
<th>AVE</th>
<th>Construct reliability (α)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face-to-face word-of-mouth communication (fWOM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fWOM1</td>
<td>0.61</td>
<td>0.01</td>
<td>–</td>
<td>0.91</td>
<td>0.74</td>
</tr>
<tr>
<td>fWOM2</td>
<td>0.55</td>
<td>0.02</td>
<td>9.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fWOM3</td>
<td>0.60</td>
<td>0.01</td>
<td>8.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fWOM4</td>
<td>0.56</td>
<td>0.01</td>
<td>9.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic word-of-mouth communication (eWOM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eWOM1</td>
<td>0.64</td>
<td>0.01</td>
<td>9.62</td>
<td>0.95</td>
<td>0.70</td>
</tr>
<tr>
<td>eWOM2</td>
<td>0.57</td>
<td>0.02</td>
<td>8.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eWOM3</td>
<td>0.77</td>
<td>0.02</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eWOM4</td>
<td>0.67</td>
<td>0.01</td>
<td>9.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affective destination image (AI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AI1</td>
<td>0.74</td>
<td>0.01</td>
<td>–</td>
<td>0.92</td>
<td>0.73</td>
</tr>
<tr>
<td>AI2</td>
<td>0.75</td>
<td>0.01</td>
<td>12.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AI3</td>
<td>0.81</td>
<td>0.01</td>
<td>14.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AI4</td>
<td>0.68</td>
<td>0.01</td>
<td>11.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognitive destination image (CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI1</td>
<td>0.70</td>
<td>0.01</td>
<td>13.54</td>
<td>0.96</td>
<td>0.76</td>
</tr>
<tr>
<td>CI2</td>
<td>0.73</td>
<td>0.01</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI3</td>
<td>0.72</td>
<td>0.01</td>
<td>14.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unique image (UI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UI1</td>
<td>0.80</td>
<td>0.02</td>
<td>–</td>
<td>0.93</td>
<td>0.77</td>
</tr>
<tr>
<td>UI2</td>
<td>0.75</td>
<td>0.01</td>
<td>12.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UI3</td>
<td>0.69</td>
<td>0.01</td>
<td>12.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall image (OI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OI1</td>
<td>0.80</td>
<td>0.01</td>
<td>13.55</td>
<td>0.97</td>
<td>0.72</td>
</tr>
<tr>
<td>OI2</td>
<td>0.67</td>
<td>0.01</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attitude (AT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT1</td>
<td>0.69</td>
<td>0.02</td>
<td>–</td>
<td>0.85</td>
<td>0.72</td>
</tr>
<tr>
<td>AT2</td>
<td>0.58</td>
<td>0.01</td>
<td>10.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT3</td>
<td>0.64</td>
<td>0.01</td>
<td>11.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travel intention (TI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TI1</td>
<td>0.71</td>
<td>0.01</td>
<td>13.26</td>
<td>0.90</td>
<td>0.74</td>
</tr>
<tr>
<td>TI2</td>
<td>0.73</td>
<td>0.01</td>
<td>12.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TI3</td>
<td>0.74</td>
<td>0.01</td>
<td>11.61</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Model fit statistics: $\chi^2 = 189.04$, df = 119, p-value = 0.032, GFI = 0.95, AGFI = 0.93, CFI = 0.98, RMSEA = 0.03, RMR = 0.005; $\text{AVE} = (\sum\lambda^2)/[(\sum\lambda^2) + (\sum\theta)]$, where \sum is the summation over the indicators of the latent variable; λ the indicator loadings; θ the indicator error variances.
critical ratio = 5.59; sig. < 0.001), unique image (standardized coefficient = 0.54; critical ratio = 7.11; sig. < 0.001), attitude (standardized coefficient = 0.22; critical ratio = 2.16; sig. < 0.05), and travel intention (standardized coefficient = 0.24; critical ratio = 2.51; sig. < 0.05), thus supporting H1, H3, H5, H7, and H9. eWOM is also significantly and positively associated with affective image (standardized coefficient = 0.67; critical ratio = 6.44; sig. < 0.001), cognitive image (standardized coefficient = 0.74; critical ratio = 6.38; sig. < 0.001), unique image (standardized coefficient = 0.69; critical ratio = 9.12; sig. < 0.001), attitude (standardized coefficient = 0.24; critical ratio = 2.60; sig. < 0.01), and travel intention (standardized coefficient = 0.42; critical ratio = 3.16; sig. < 0.01), thus supporting H2, H4, H6, H8, and H10. Affective image (standardized coefficient = 0.66; critical ratio = 5.82; sig. < 0.001), cognitive image (standardized coefficient = 0.52; critical ratio = 2.24; sig. < 0.05) and unique image (standardized coefficient = 0.39; critical ratio = 2.20; sig. < 0.05) were significantly and positively associated with overall image, thus supporting H11-H13.

Overall image has a positive and significant effect on tourist attitude (standardized coefficient = 0.96; critical ratio = 6.19; sig. < 0.001) and travel intention (standardized coefficient = 0.89; critical ratio = 4.46; sig. < 0.001), providing support for H14 and H15. Finally, tourist attitudes have a significant effect on travel intention (standardized coefficient = 0.34; critical ratio = 3.44; sig. < 0.001). H16 is thus supported. Accordingly, the path of face-to-face WOM/eWOM → destination image (i.e. affective, cognitive, unique, and overall image) → attitude → travel intention is supported in this study.

5. Discussion and conclusions
5.1 Summary of findings
This paper provides a new perspective on how information sources, particularly face-to-face WOM and online WOM, influence destination image and attitudes toward a certain destination as well as intention to travel the destination. Our model provided a unique and complicated mechanism of affecting face-to-face WOM and online WOM on travel intention through destination image and attitude. We proposed 16 hypotheses about the impact of face-to-face WOM and eWOM on destination image, attitude, and travel intention. Using newly developed measures, an experimental survey was conducted. In total, 678 responses from a survey were analyzed using SEM. In this study, we used data collected from tripadvisor.com. Finally, all of the 16 hypotheses were supported as summarized in Table VIII.

5.2 Contributions and implications for academics and practitioners
Our study made several contributions to knowledge. First, to the best of our knowledge, this is the first empirical paper that has investigated the simultaneous influences of
Figure 2.
Estimated model
face-to-face WOM and eWOM on destination image and attitude formation process. The process of tourists’ destination information inference, though it provides a concrete rationale for customer behavior regarding face-to-face WOM and eWOM, had not previously clearly understood because it is an intrinsic and an implicit mental operation. The inferred information is not revealed until a tourist exhibits an attitudinal (positive/negative image or attitude formation) or behavioral responses (travel or not). Most prior studies have not identified the response processes for the two information sources (Jalilvand et al., 2012; Doosti et al., 2016; Jalilvand, 2016); We, by focusing on the preceding inference process, enriched the discussion of tourist response to face-to-face WOM and eWOM. Second, we proposed and validated a new destination evaluation framework of the tourist’s travel intention model, which could be applied to compare the effects of face-to-face WOM and eWOM in an attempt to determine tie strength. This framework was effective because the comparing the two formation sources help to destination marketers to formulate more effective strategies to promote the destinations. Finally, we proposed a new mechanism of destination image formation through a four dimensional framework developed by Qu et al. (2011), namely, affective, cognitive, unique, and overall image. It is meaningful because it emphasizes the existence of four destination image constructs play a critical role in the relationship between information sources, including face-to-face WOM and eWOM, and travel intention. Previous works (Jalilvand et al., 2012; Doosti et al., 2016) had considered destination image an overall construct without addressing its components.

The results of the structural relationship analysis show that face-to-face WOM plays an important role in building affective, cognitive, and unique destination image. These findings complement those of Baloglu and McCleary (1999), Beerli and Martin (2004), and Hanlan and Kelly (2004), who argue that traditional WOM can influence the formation of the destination image. Moreover, consistent with the view expressed in Jalilvand et al. (2012), Setiawan (2014), and Doosti et al. (2016) that eWOM significantly impacts destination image, our findings show that eWOM has significantly positive effects on affective, cognitive, and unique destination image. Due to the intangibility of the destination products, tourists prefer to seek credible information sources like WOM information as solicited and unsolicited agents. Good WOM cannot only create the positive image of the destination but also increase awareness of the destination to people who are not very familiar with the

Table VIII.
Results of structural model

<table>
<thead>
<tr>
<th>Path</th>
<th>Standardized β</th>
<th>Critical ratio</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face-to-face WOM→affective image</td>
<td>0.45</td>
<td>5.25</td>
<td>***</td>
</tr>
<tr>
<td>Face-to-face WOM→cognitive image</td>
<td>0.57</td>
<td>5.58</td>
<td>***</td>
</tr>
<tr>
<td>Face-to-face WOM→unique image</td>
<td>0.53</td>
<td>7.11</td>
<td>***</td>
</tr>
<tr>
<td>Electronic WOM→affective image</td>
<td>0.67</td>
<td>6.44</td>
<td>***</td>
</tr>
<tr>
<td>Electronic WOM→cognitive image</td>
<td>0.74</td>
<td>6.37</td>
<td>***</td>
</tr>
<tr>
<td>Electronic WOM→unique image</td>
<td>0.69</td>
<td>9.12</td>
<td></td>
</tr>
<tr>
<td>Face-to-face WOM→attitude</td>
<td>0.22</td>
<td>2.16</td>
<td>0.026*</td>
</tr>
<tr>
<td>Electronic WOM→attitude</td>
<td>0.24</td>
<td>2.60</td>
<td>0.009***</td>
</tr>
<tr>
<td>Affective image→overall image</td>
<td>0.65</td>
<td>5.82</td>
<td>***</td>
</tr>
<tr>
<td>Cognitive image→overall image</td>
<td>0.52</td>
<td>2.24</td>
<td>0.025*</td>
</tr>
<tr>
<td>Unique image→overall image</td>
<td>0.38</td>
<td>2.20</td>
<td>0.031*</td>
</tr>
<tr>
<td>Overall image→attitude</td>
<td>0.95</td>
<td>6.18</td>
<td></td>
</tr>
<tr>
<td>Face-to-face WOM→travel intention</td>
<td>0.23</td>
<td>2.51</td>
<td>0.012*</td>
</tr>
<tr>
<td>Electronic WOM→travel intention</td>
<td>0.41</td>
<td>3.16</td>
<td>0.002***</td>
</tr>
<tr>
<td>Overall image→travel intention</td>
<td>0.89</td>
<td>4.45</td>
<td>***</td>
</tr>
<tr>
<td>Attitude→travel intention</td>
<td>0.34</td>
<td>3.44</td>
<td>0.001***</td>
</tr>
</tbody>
</table>

Notes: * < 0.05; ** < 0.01; *** < 0.001
destination. It should be noted that different patterns of information source usage may result in different destination images and different choices and behaviors at the destination. However, comparing path coefficients for both face-to-face WOM and eWOM revealed that eWOM has stronger effects on destination image components. Interestingly, destination marketing world is changing as tourists use technology to share their experiences online through WOM, and tourism businesses are trying to adjust to the shift. Travelers produce large amounts of eWOM via various social media platforms to share their experience with others and help other travelers to support their travel decision. EWOM offers travelers more travel-related information rather than face-to-face WOM. According to our results, both face-to-face WOM and eWOM significantly and positively impact tourist attitude toward destination. These results confirm the findings of other studies (Xia and Bechwati, 2008; Bambauer-Sachse and Mangold, 2011; Soderlund and Rosengren, 2007; Vermeulen and Seegers, 2009; Jalilvand and Samiei, 2012a; Jalilvand et al., 2013), arguing for the positive effects of face-to-face WOM and eWOM on tourist attitude. Interestingly, the effect of eWOM on tourist attitude was stronger than face-to-face WOM. The results also show that both face-to-face WOM and eWOM are important antecedents of tourist intention to travel a certain destination. These findings support the previous arguments that the face-to-face WOM and eWOM directly influences intentions to revisit the destination (Jalilvand et al., 2012, 2015; Jalilvand and Samiei, 2012c; Beiger and Laesser, 2004). Similarly, it was found that eWOM has a stronger influence on travel intention rather than face-to-face WOM.

This work supports the results of Qu et al.’s (2011) study that three components of destination image including affective, cognitive, and unique image are significantly influential on overall image. A tourist who holds a more positive image of a destination perceives more value in traveling to the destination and is more likely to revisit and recommend the destination to others. However, contrary to Qu et al.’s findings, which found the stronger impact of cognitive evaluation on overall image than that of affective evaluation, this study found that affective image is more influential on the overall image. The difference between the two results may be due to the different treatment on the constructs of cognitive and affective image because of special conditions of target destination (Iran), and the implementation of study in an online-based survey. According to Baloglu and McCleary (1999), affective image may have more impact on overall image before actual visitation whereas cognitive image may exert more influence on overall image when actual visitation is realized. This study has demonstrated that overall image positively impacts travel intention, which correlates with the findings of Qu et al. (2011) for tourists visiting Oklahoma, as well as with what was observed by Alcañiz et al. (2005) among tourists visiting Australia.

In addition, the prediction of a relationship between overall image and destination attitude is confirmed in this. This finding is in line with a few empirical studies (e.g. Jalilvand et al., 2012; Woomi and Soocheong, 2008). Furthermore, the findings of this study confirm that attitude toward the destination has a significant influence on travel intention. The results of this study are also in line with only a few empirical studies. For example, Jalilvand and Samiei (2012b, c) reported that tourist attitude toward Islamic destinations are a key determinant of making decision to travel the destinations. In sum, theoretically, this study confirmed and validated measurement items, as well as the proposed structural relationships. It is believed that the results of this study can provide solid foundations by which academia can acquire further knowledge about the tourism destination context.

Our results have important practical implications for tourism destination managers and practitioners as well. First, we suggested that face-to-face WOM plays a key role in the process of affective, cognitive, and unique destination image formation. Further, face-to-face WOM was found to be an important antecedent of tourist attitude and travel intention.
For potential tourists, recommendation is an important information source in forming an image toward the particular destination. Destination marketers should keep in mind that face-to-face WOM is not a simple functional activity, involving only passing on a comment about a destination to a private party, which means it cannot be measured fully by simply counting the number of occasions on which such comments occur.

WOM often occurs serendipitously, or when a tourist’s need is recognized, emphasizes how important it is for destination marketers to keep information at the ready in appropriate places and at appropriate times. This readiness requires identifying the processes that tourists use to search for information. Ways may also be sought to motivate tourists to offer favorable, rich, strong messages to friends and acquaintances, possibly through some form of novelty event or exclusive tourism attractions among potential WOM givers. Such information could be positive face-to-face WOM to help or negative face-to-face WOM to warn the tourist. Moreover, face-to-face WOM also arose in a serendipitous sense, such as when a conversation prompted a link in the giver’s memory to a previous experience with given destination. Hence, high-quality tourism services can enhance the possibility of favorable face-to-face WOM about the destination. Promotion can be considered as a face-to-face WOM trigger, though it was mostly associated with negative, but memorable, advertising. Following an initial comment on the promotion, the conversation could become favorable if the cumulative experiences with the promoting destination had been positive.

Destinations should keep in mind that providing a pleasant experience for their tourists has a major effect on the development of positive images for non-visitors. In fact, tourism destinations should provide tourists with favorable experiences. In turn, they will create a positive image and recommend the place to other tourists. Thus, it helps potential tourists to develop a favorable image of destination that affects the choice of a destination. Second, the study found that eWOM has a considerable influence on affective, cognitive, and unique image of a given destination. Additionally, eWOM was found to be a powerful predictor of tourists’ attitude and travel intention. The findings suggest that destination managers should take more attention to the evolution of destination image and destination attitude through the dissemination of eWOM by tourists in cyberspace. We, therefore, propose the following strategies for rival destinations to achieve competitive advantages:

- Building online tourism community: the tourism websites are the main place in which tourists exchange information online. They may freely speak about own traveling feeling, the scenery of scenic spot, the service of restaurant and hotel in the community. Tourism websites should establish the discussion community for tourists to exchange opinions conveniently.

- Monitoring eWOM to forecast the reception situation of tourist scenic spot: the volume of online reviews is associated with the reception population of scenic spot. Then, tourism managers may monitor the change of eWOM volume to forecast the reception situation in the future. They may also evaluate the image of tourism destination and tourist cognition through the content of online reviews and blogs. Further, they may purposefully mold the image of tourism destination through providing real information about the attractions and characteristics of destination.

- Encouraging tourists to participate in discussions of online communities: tourism managers should adopt each way to encourage tourists to publish online reviews and write the blog in the tourism websites. For example, tourists can be given some prizes for the member of community if he/she publishes a review or writes a blog. Consequently boosting the quality and navigability of the information disseminated in online communities can contribute to the formation of favorable image of destination.
Third, the findings of the study indicate that eWOM seems to have the most pronounced effect on destination image components than face-to-face WOM. As the internet provided easy access to information with minimum time and costs involved, prospective tourists are likely to take advantage of eWOM information as a supplementary information source. It is difficult for practitioners to observe and control face-to-face WOM because face-to-face WOM is usually exchanged in private conversations and is ephemeral. However, eWOM is more manageable because the messages about destination are posted online and are easily accessible. For tourism practitioners, observing messages posted on review sites such as traveladvisor.com may help monitoring different kinds of destination images in a timely and cost-effective way. It is possible to analyze the review messages by categorizing destination image dimensions.

The review items can be divided into such categories as quality of experiences, touristic attractions, infrastructure, and natural/cultural environment. Satisfaction with those items can be measured. Positive and negative online reviews of tourists can be measured quantitatively by counting the numbers of positive or negative words that reviewers have used. Forth, the study revealed that cognitive, affective, and unique image affect overall image of destination and consequently, travel intention. Hence, tourism destinations should monitor the destination image regularly to examine if the projected image is well adopted by tourists. Positioning strategy must be implemented to create the desired brand image in the minds of the target market. Positioning strategy should start with identifying the strong elements that uniquely differentiate a destination from competitors. Fifth, destination managers should keep in mind that the way in which their destination attributes are transmitted could definitely determine the effects on perception, attitudes, and travel intentions. For example, more favorable knowledge about important characteristics of a destination could positively affect the general perception, attitudes, and travel intentions toward a destination.

5.3 Limitations and future directions
Although the present study provides valuable insights into an understanding of the mechanism of destination image formation through face-to-face WOM and eWOM, there are several limitations that should be recognized. First, in the attitude conceptualization, we did not consider attitude components in our proposed model. Therefore, we suggest that future research should include affective, cognitive, and behavioral components in a more complex model. Second, this study only investigated the effects of face-to-face WOM and eWOM on destination image in a comparative approach. Thus, comparative analysis of other types of information sources such as mass media with the two previously investigated sources could be included in future studies to examine the linkage between various types of information sources, destination image, and attitude. Third, we only focus on one tourist destination, namely, Iran, which may limit the generalizability of the findings.

Forth, behavioral responses and consequences related to destination image, such as satisfaction, perceived service quality and loyalty in regard to tourism destinations should be included in future investigations. It would be interesting to explore these avenues in future research. Fifth, we conducted an online survey for measuring research variables; this might have introduced unexpected biases even though we provided the sheets from the computer screen and fully explained the items in their context. Therefore, future research can replicate this study with a paper-based survey. Sixth, our model was complex to include other variables such as electronic referral or destination trust. Future research could examine the effect of electronic referral in association with destination image, attitude, and travel intention. It would also be interesting to explore the mediating role of destination trust in future research.
References

Further reading

Corresponding author

Mohammad Reza Jalilvand can be contacted at: rezajalilvand@ut.ac.ir

For instructions on how to order reprints of this article, please visit our website:

www.emeraldgrouppublishing.com/licensing/reprints.htm

Or contact us for further details: permissions@emeraldinsight.com