چکیده

افزایش ابعاد فضایی ویژگی‌های ورودی موجب تغییرات نسبی کلاس‌های پیش‌بینی در طبقه‌بندی تصادفی سنجش‌آور می‌شود. اما اگر ابعاد فضایی ویژگی‌های ورودی موجب تغییرات نسبی کلاس‌های پیش‌بینی در طبقه‌بندی تصادفی سنجش‌آور می‌شود، اجسام کم‌ضخامتی می‌توانند در طبقه‌بندی تصادفی سنجش‌آور می‌شود. امکانات روش پیش‌بینی‌های احتمال‌برداری در راه پیشنهادی نسبی خصوصاً SVM از دیدگاه ارزیابی در بررسی روش‌های انتخاب ویژگی در نهایت سایر روش‌های پیش‌بینی می‌تواند در میان این میان‌بینندگی باعث پیش‌بینی‌های ممکن در نهایت سایر روش‌های پیش‌بینی می‌شود.

کلیدواژه‌ها: ماشین‌ها، بردار پیش‌بینی، فضای ویژگی، همه‌پوشانی، دست‌جمعبی بهنیه داده‌های با ابعاد بالا

محسن جعفری‌فرد، مهدی آخوندزاده

1. دانشجو دکتری نخستین، گروه سنجش‌آور، دانشکده مهندسی نفت‌شور و اطلاعات مکانی، پردیس دانشکده فنی، دانشگاه تهران
2. استاد، گروه سنجش‌آور، دانشکده مهندسی نفت‌شور و اطلاعات مکانی، پردیس دانشکده فنی، دانشگاه تهران

تاریخ دریافت مقاله: 1393/11/10، تاریخ پذیرش مقاله: 1395/1/10

Email: jafarim@ut.ac.ir

شیوه علمی پژوهشی مهندسی فناوری اطلاعات مکانی

سال پیشنهادی، شماره نخست، بهار 1396
Vol.5, No.1, Spring 2017
132-142
به خاطر افزایش تمایز بین کلاس‌ها است اما از این نظر به به پیشین فناوری در سنجش‌ده‌های سنجش ازدود و همچنین تکنیک‌های مختلف استخراج اطلاعات و ویژگی از داده‌های آن‌ها فضای ویژگی و توجه به افزایش است. اجتناب این داده‌ها منعکس به تصاویر سنجش‌ده‌های فراطیفی که در برخی از آن‌ها تعادل این داده‌ها به بیش از 200 باند طیفی می‌رسد اشکال کرده. 1 و 2. 1، 2. 1، 2. 1 این اشکال تصوری بر یک‌سایت معمول در این بند طبقه‌بندی با سه فضا و رنگ است. فضای ویژگی‌های ورودی، فضای کلاس‌های خروجی و فضای فرضیات با هماهنگی و با همیان فضای مدل، فضای است که تمام فرضیات و یا طبقه‌بندی یک‌تایی مختلف در داخل آن قرار می‌گیرند (مانند 3 هم‌سانه دیدگی، شیکه عصبی، مناسب بردار پشتیبان و ...). این فضا در افزایش یک فضای ارتباطی بین فضای ویژگی‌های ورودی و فضای کلاس‌های خروجی محصول می‌شود (مدلی که می‌تواند به هرتیم نحو ارتباط بین دو فضا را برقرار نماید)، ثابت می‌شود که با افزایش ابعاد فضاهای ویژگی‌های ورودی، ابعاد فضای فرضیات به صورت نمایی رشد می‌کند. 1. 4. این مسئله فراورده طبقه‌بندی را به حدا زیادی غیرقابل اطمینان و نامتمام می‌سازد.

1. پولاریمتریک سنتیت آپنتراد

2. Hough
طراح ترکیب طبقه‌بندی کننده‌ای اولین بار توسط هانسن و سالامون ۲۰۰۰ در سال ۱۹۹۰ ارائه گردید. این ترکیب از طبقه‌بندی کننده‌های مختلف ساخته شده و نتایج آن در این صورت ترکیب طبقه‌بندی کننده‌ای دارای دقیقه بیشتر نسبت به هریک از طبقه‌بندی کننده‌های به صورت مفرده خواهند بود. اکالاسکالاک ۲۰۰۰ ترکیب طبقه‌بندی کننده‌های نزدیک گری برای تهیه‌رسانی آمارشده‌های ۱۹۳۵ مطرح نمودند. در سال ۱۹۹۸ بیان ۲۰۰۰ ترکیب این طبقه‌بندی کننده‌ای راب روی دسته‌های مختلف ویژگی که کار گرفت. در سال ۲۰۰۰ دیتریچ ۴۰ ترکیب متنوع فردی ترکیب طبقه‌بندی کننده‌ای را مطرح و عمکار آن را باهم مقایسه نمود. دانش تحقیق بر روی این موضوع بسیار گسترش بوده و محققین مختلف نظریه‌های مختلفی را یکی از روش‌های مقابله با مشکلات فوق استفاده از روش‌های استخراج/انگیزه است (۱۳، ۱۴، ۱۵ و ۱۶). اگرچه استفاده از این روش‌ها به‌یادگار محاسباتی را کاهش می‌دهد، اما در اینجا اوقات از نظر پتانسیل داده‌های استفاده توضیح و دقت طبقه‌بندی کاهش می‌یابد. راه‌حل دوم استفاده از روش‌های دسته‌جمعی ۱ در طبقه‌بندی است (۱۷، ۱۸ و ۱۹). این روش‌ها به صورت ترکیبی از طبقه‌بندی کننده‌ها همسان و با غرب‌هایان می‌گردد. به‌طور کلی، سه روش برای ایجاد طبقه‌بندی کننده‌های همسان و مشابه وجود دارد: ۱) دستکاری در داده‌های آزمونی، دست کاری در فضای ویژگی و دست کاری در خروجی. روش‌های دسته‌جمعی از یک طبقه‌بندی کننده پایه تشکیل‌شده‌اند که وقتی تکیی می‌شود باید مستقل از یکدیگر و تا حد امکان متنوع و سریع باشد.

مطالعه بر روی ترکیب طبقه‌بندی کننده‌ها از اوایل دهه ۹۰ آغاز شد و محققین مختلف با نام‌های مختلفی از آن استفاده کردند. ۲

۱ Ensemble Method
۲ Modification

- Hybrid Method - Multiple Experts - Combining Classifiers - Classifier Ensembles
- Classifier Fusion - Mixture of Experts - Decision Combination - Decision Fusion

۱ Hansen
۲ Salamon
۳ Skalak
۴ Bay
۵ Dietterich
طبقه‌بندی SVM با هدر دسته‌داده آموزشی انجام و سپس تنظیم حاصل از آن‌ها در فرآیندی تجمعی می‌شود.

روش ارائه‌شده در این مقاله تأکید بر استفاده از طبقه‌بندی کننده SVM با عنوان طبقه‌بندی کننده SVM یا SVM به طبقه‌بندی کننده SVM یا SVM بر جدایی آن‌ها بیشتری تشکیل گرفته است [۲۹]. استفاده از این مدل در طبقه‌بندی و رگرسیون در تحقیقات سال‌های اخیر رو به افزایش بوده است. عملکرد مطلوب در تعداد داده‌های آموزشی کم از جمله مراحلی حساسیت آن به بقالس بین‌دوز داده‌های آموزشی از جمله معمولی است [۳۰] . SVM در یک سطحی از جمله روشهای بوده است که به بهبود عملکرد این طبقه‌بندی کننده و رفع مشکلات آن ارائه شده است.

ایده به‌صورت معمولی در [۳۱] مطرح گردید. از آن‌ها نیز بعدها SVM استفاده کرده‌اند. در این مقاله به صورت کمک به طبقه‌بندی کننده SVM در روش ارائه‌شده در این تحقیق نمونه‌های آموزشی به استفاده از طبقه‌بندی کننده‌ی همه در نظر گرفته و از این‌ها در این‌که به بیشتر در پیشنهاد روش پیشنهادی می‌شود. از دیگر مراحل و روش پیشنهادی که در طرح‌های جمعی قبلاً کمتری دیده شده است ادامه طبقه‌بندی کننده SVM در صفحه‌ها از وابستگی از یک که در این‌که است که ترکیب تلفیق است سپس که ترکیب غرب‌نشانی و دقیق‌تر طبقه‌بندی کننده می‌شود.

در ادامه این مقاله در پی‌بست‌های متغیر مفاهیم روش‌های دسته‌جمعی در طبقه‌بندی و سه‌روش پیشگیری‌های استفاده و توصیبات مختصرلی ارائه می‌شود. بخش سوم مطرح روش پیشگیری معرفی می‌شود. بخش چهارم اختصاص به نتایج پیاده‌سازی روشهای پیشنهادی بر روی داده‌های فرامی و پلازما می‌نگارد.

1 Marigin
2 Vapnik
3 Boosting
4 Kim
5 Bagging
در نهایت در پنجم نتیجه‌گیری از این تحقیق ارائه خواهد شد.

۲- روش‌های دستی‌جمیعی در طبقه‌بندی

برای نمونه‌های خطا جریمه‌سازی برای طبقه‌بندی محسوب می‌شود و طبقه‌بندی کننده را مجبور می‌کند.

روی موارد خطا نمک‌کن

در مقابل روش‌های بوسیله‌گی که علما بر عهده‌دارند، روش‌های بین‌گابی‌های مجموعه‌ای از بین‌گابی‌ها است. [۲۳] اگرچه اساسی روش‌های گروهی مواری بوره‌گیری است، استقلال بین بین‌گابی‌های پایه است زیرا خطای بطور جمع‌گیری به‌وسیله ترکیب‌های بین‌گابی‌های مستقل کاهش می‌یابد. این روش ها به‌طور ذاتی برای محاسبات موادی مناسب می‌باشد و سرعت آموزش را می‌توان به‌اساسی با استفاده از بردارنده‌های جدید‌سازی بردار پرداخته‌اند. [۲۳]

اصطلاح بین‌گابی از ترکیب دو کلمه تجمع و خود‌درادادن به معنی جمع‌آوری خود‌راثرات در آمده است. مجموعه نمونه‌های آموزشی تشکیل دهنده بین‌گابی‌های پایه خود‌راثرات و روش آماده‌نگ‌های حاصل از بین‌گابی‌های پایه را جمع‌آوری گوند. در بین‌گابی از روش ان‌پایه یا جدایی‌گذاری از نمونه‌های آموزشی خود راثرات‌ها تشکیل و با ریش گر احتمال نتایج از آموزش می‌شوند. [۲۳]

جنگل‌های محاسباتی ساخت یک مجموعه قوی از ساخت یک بین‌گابی قوی کمر است. [۲۳] به‌نوعی مانند متداول‌ترین و پایه‌ترین روش‌های دستی‌جمیعی بوسیله‌گی که نسبت به بین‌گابی‌های پایه می‌تواند با استفاده از بین‌گابی یک با بین‌گابی در انتخاب‌نگ‌های ویژه‌ای ورودی می‌باشد و در موارد کارای در نمونه‌های آموزشی، فضای ویژگی‌های می‌برای ترکیب بین‌گابی‌های متنوع و مستقل دستگاهی می‌شود.
۳- روش پیشنهادی

همان طور که پیشتر نیز اشاره شد هدف اصلی روش پیشنهادی اسک اتفاقی افزایش کارایی طبقه‌بندی کننده‌ها SVM از طریق دست‌ساخت کننده از SVM و گروه‌های سازی ارائه می‌شود. این تحقیق از این روش درک‌شده در پبخش ۳ الگو گرگته است و مزایای هرکدام از روشهای رو به اعمال در سطح احتمال و به روش SVM

در یک طرح دارد. روش پیشنهادی از سه مرحله تشکیل شده است (شکل ۲). تشکیل طبقه‌بندی کننده‌های با مجموعه نمونه‌های آموزشی و فضای ویژگی تصادفی، آموزش طبقه‌بندی کننده‌ها به صورت متوازی و در نهایت ادامه نتایج طبقه‌بندی کننده‌ها به صورت غیرخطی و SVM در سطح احتمال و به روش SVM.

شکل ۲: روش پیشنهادی، مانند ها تصادفی برای پیش‌بینی (طبقه‌بندی جنبگانه بیشتر داده‌های با ابعاد بالای فضای ویژگی) در تشکیل خود را ایجاد می‌کنند و این هم با یک فرآیند مشابه انتخاب می‌شود. این به‌صورت دیگر در یک پایاگیرنده گروه‌بندی متطلق شکل (۳) خواهد داشت.

Algorithm. Bootstrap

INPUT: $F, U, K = size of bootstrap samples, R = size of bootstrap features,
T = number of bootstraps
OUTPUTS: U_t, F_t
for $t = 1 \rightarrow T$
do
Draw a bootstrap sample U_t of size K in U.
Draw a bootstrap feature F_t of size R in F.
end for

شکل ۳: الگوریتم خودرایانداز پیشنهادی

۱۳۸
مشکل اصلی میزان IG این است که بدون نظر گرفتن ارتباط ویژگی با طبقهبندی، ویژگی‌ای را انتخاب می‌کند که دارای مقادیر بیشتری است. برای مثال ممکن است یک ویژگی مثل "id" وجود داشته باشد که برای هر نمونه مقدار متغیرهای فردی را دارد، در این صورت این ویژگی را به عنوان بهترین ویژگی برای تقسیم داده انتخاب می‌کند؛ در حالی که این ویژگی نمی‌تواند تعیین داده شود و برای پیش‌بینی مناسب نیست [33]. برای رفع این نقص می‌توان از نسبت محوری که از رابطه (3) به دست می‌آید استفاده کرد.

\[
\text{P}(D; D_1; \ldots; D_k) = G(D; D_1; \ldots; D_k). \left(\sum_{i=1}^{k} \frac{|D_i|}{|D|} \log \frac{|D_i|}{|D|} \right)^{-1}
\]

گام مهم دیگر در روش پیشنهادی استفاده از روش SVM تقویت در آموزش طبقه‌بندی کننده است. SVM یا مجموعه داده‌های آموزشی (\(x\), \(y\)) را به طبقه‌بندی کننده پایه SVM می‌فرسته و بعد از نظر گرفتن نتایج کریتل K عبارت است از رابطه (4):

\[
\text{sign}(f(x)) = \sum_{i=1}^{K} y_i \alpha_i K(x, x_i) + b
\]

در این رابطه b یک پایان است و ضرایب بهره‌ای برای پیش‌بینی کردن میزان گزارشی مطلق رابطه (5) حاصل می‌شود [36].

با معلوم دادن \(m\) نمونه‌های آموزشی، احتمال اینکه نمونه‌ای آموزشی مدل (\(\lambda\)) است لذا احتمال آن که نمونه نام انقیح بپیدا بگیرد

\[
\text{Ent}(D) = - \sum_{y \in Y} P(y|D) \log P(y|D)
\]

\(D_k\) اگر مجموعه آموزشی D به زیرمجموعه‌هایی تقسیم گردد، ممکن است انتخاب کاهش پایه و مقدار کاهش، همان (IG) است، یعنی:

\[
G(D; D_1, \ldots, D_k) = \text{Ent}(D) - \sum_{i=1}^{k} \frac{|D_i|}{|D|} \text{Ent}(D_k)
\]

با معلوم دادن جفت مقدار ویژگی که باعث IG بزرگ‌تری بشود به عنوان میزان معیار انتخاب می‌شود.

\[\text{Gain ratio}\]

\[\text{Information Gain}\]
\[L_p = \frac{1}{2} C + \sum_{m=1}^{n} \xi_i^+ + \sum_{m=1}^{n} \xi_i^- + \sum_{m=1}^{n} \alpha_i \left[y_i (\alpha_i x_i + b) - 1 + \xi_i^+ \right] - \sum_{m=1}^{n} \xi_i^- \]
رباطه (5)

طرح اگر در روش پیشنهادی در سطح حفاظت از جمع‌بندی کننده‌های پایه و با روش SVM درصدی که خود را مانند از مرحله اول (گیکنگ) و طبقه‌بندی کننده در مرحله دوم از هریک از خود را اندازه‌گیری کامل آگاهی در SVM- با همین سطح احتمال را تولید می‌کند که در محصول می‌شود.

در تمام طبقه‌بندی پایه (SVM) در این مقام از کردن گویس لایه‌های SVM به دلیل توانایی این کنتن در اجرا ندارد با ابعاد بالا استفاده شده است.

\[K(x_i, x_j) = \exp \left(-\frac{|x_i - x_j|^2}{2\sigma^2} \right) \]
رباطه (9)

که در این کردن σ و پایین در انتخاب مقدارهای SVM ویژگی‌ها را نشان می‌دهد. در پارامتر C و SVM این مقابله با کمک روش جستجوی شیکاری در هر گره که یک انجام می‌شود با پرویز می‌گردد. این دو پارامتر در طبقه‌بندی SVM ۷۰۰ بار و C منفرد ۲۰۱۹ ۹۷‌گی سرمایه‌گذاری مصرف‌شده است. این دو پارامتر در تمام طبقه‌بندی کننده‌ها پایه دوازده محاسبه می‌شود.

۴ - مجموعه داده مورد استفاده

به‌منظور ارائه یک روش پیشنهادی دو مجموعه داده با ابعاد فضای ویژگی بایان و انتخاب شد. داده‌های واروند فراطبیعی با ۱۵۸ مورد طبیع و داده فضارسان یک‌پارسی با استخراج ویژگی‌های مختلف به فضایهای با ابعاد ۹۴ می‌رسد. به‌این‌ترتیب ابعاد بالای فضای ویژگی به همراه پیچیدگی‌های داده‌ها می‌تواند به‌منظور ارزیابی آزمون پایه در روش SVM ایجاد حاشیه در آزمون داده‌های مشابهی نشان دهنده یا بررسی کننده.
تشخیص مشخصات بزرگ حجمی از ابعاد آزمایشگاه در ناحیه مورد بررسی

شکل 5: منطقه مورد بررسی (الف): تقسیم حروف زمینی از 16 کلاس موجود. (ب): تصویر باند 12 از داده مورد استفاده

1 Indiana
2 AVIRIS
جدول ۲: تعداد داده‌های آموزشی کلاس‌های مورد بررسی در داده‌فرآیندی

<table>
<thead>
<tr>
<th>شماره کلاس</th>
<th>نام کلاس</th>
<th># آموزشی</th>
<th>شماره کلاس</th>
<th>نام کلاس</th>
<th># آموزشی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>پونچه</td>
<td>۵۴</td>
<td>۹</td>
<td>جو دوسر</td>
<td>۲۰</td>
</tr>
<tr>
<td>۲</td>
<td>ذرت ۱</td>
<td>۱۴۳۳</td>
<td>۱۰</td>
<td>سویا</td>
<td>۹۶۸</td>
</tr>
<tr>
<td>۳</td>
<td>ذرت ۲</td>
<td>۸۴۲</td>
<td>۱۱</td>
<td>سویا</td>
<td>۴۲۶۸</td>
</tr>
<tr>
<td>۴</td>
<td>ذرت ۳</td>
<td>۲۷۴۴</td>
<td>۱۲</td>
<td>گندم</td>
<td>۶۱۴۴</td>
</tr>
<tr>
<td>۵</td>
<td>جمن/امتحان</td>
<td>۴۹۷</td>
<td>۱۳</td>
<td>چنگک</td>
<td>۲۱۲۴</td>
</tr>
<tr>
<td>۶</td>
<td>جمن/درخت</td>
<td>۷۴۷۶</td>
<td>۱۴</td>
<td>چنگک</td>
<td>۱۲۹۴</td>
</tr>
<tr>
<td>۷</td>
<td>جمن امتحان-درخت</td>
<td>۲۶۶۶۱۵</td>
<td>۱۵</td>
<td>ساختمان سیز</td>
<td>۳۸۰</td>
</tr>
<tr>
<td>۸</td>
<td>پونچه خشک</td>
<td>۴۸۹۹</td>
<td>۱۶</td>
<td>برج سگی و فولادی</td>
<td>۹۵</td>
</tr>
</tbody>
</table>

در مورد روش‌های تجزیه ناهدودن ابتدایی تجزیه‌نامه ویژگی‌ها استخراج شده ولی در مورد ویژگی‌های تجزیه ناهدودن‌های حفظ اطلاعات فاز کاهش نوزی بعد از استخراج ویژگی‌ها انجام شد. در مجموع فضای ویژگی‌ها ایجادشده با ابعاد ۹۴ ویژگی جایل پسوندمنی برای ارزیابی روش پیشنهادی به وجود می‌آورد. تصوییر ترکیبی ویژگی‌های پانل‌های داده مربوط استفاده در شکل (۶-اول) و تصویر متصل-گوگل‌ارت3 آن در شکل (۶-دوم) نشان داده‌شده است.

جدول ۴: داده‌های آموزشی و آزمایشی مجموعه داده اول

<table>
<thead>
<tr>
<th>نام کلاس</th>
<th>ماهیت</th>
<th># آموزشی</th>
<th># آزمایشی</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ro</td>
<td>جاده</td>
<td>۱۱۷</td>
<td>۱۵۳</td>
</tr>
<tr>
<td>Bu</td>
<td>ساختمان</td>
<td>۳۶۹</td>
<td>۲۵۸</td>
</tr>
<tr>
<td>Tr</td>
<td>درخت</td>
<td>۴۴۴</td>
<td>۴۴۴</td>
</tr>
<tr>
<td>Wa</td>
<td>آپ</td>
<td>۵۳۰</td>
<td>۵۳۰</td>
</tr>
<tr>
<td>GV</td>
<td>پوشش‌گیاهی</td>
<td>۵۳۰</td>
<td>۵۳۰</td>
</tr>
<tr>
<td>مجموع</td>
<td></td>
<td>۲۱۶۲</td>
<td>۲۱۶۲</td>
</tr>
</tbody>
</table>

۷ Google Earth

1- San Francisco
2- Radarsat-2
3- Fine quad
4- Single Look Complex
5- Range
6- Box-car
جدول 5: ویژگی‌های پلازماگریک مورد استفاده

<table>
<thead>
<tr>
<th>ویژگی</th>
<th>توصیف و نماد</th>
<th>تعداد</th>
</tr>
</thead>
<tbody>
<tr>
<td>ویژگی‌های اصلی</td>
<td>ماتریس پراکنش 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ماتریس همودوی 2</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>ماتریس کوارتاس 3</td>
<td>6</td>
</tr>
<tr>
<td>ویژگی‌های تجزیه</td>
<td>تجزیه کروگاغر 4</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>هوبن 5</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>بارنر 6</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>کلون 7</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>هلم 8</td>
<td>9</td>
</tr>
<tr>
<td>ویژگی‌های تجزیه</td>
<td>ون زیل 9</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>فریمن-درون 10</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>یاماکوچی 11</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>توژی 12</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>کلون-پاتر 13</td>
<td>19</td>
</tr>
<tr>
<td>تفکیک کننده‌های SAR</td>
<td>نسبت پلاریزاسیون 14</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>همبستگی پلاریزاسیون 15</td>
<td>3</td>
</tr>
<tr>
<td>تمام ویژگی‌ها</td>
<td></td>
<td>94</td>
</tr>
</tbody>
</table>

1 Scattering Matrix
2 Coherency matrix elements
3 Covariance matrix elements
4 Krogager
5 Huynen
6 Barnes
7 Cloude
8 Holm
9 Holm
10 Freeman-Durden
11 Yamaguchi
12 Touzi
13 Cloude-Pottier
14 SPAN
15 Fractional Polarization
16 Correlation Coefficients
5- پیادهسازی و تحلیل نتایج

روندهای آزمایشی و تحلیل آنها به‌منظور ارزیابی روش پیش‌نهادی در برای سایر SVM

1- نتایج روش پیش‌نهادی در برای سایر SVM

روش‌های دسته‌جمعی در آزمایش‌های مرحله‌ای برای هدف صحت سنگی و ارزیابی قدرت روش پیش‌نهادی در گروهی کردن طبقه‌بندی کننده در برای سایر روش‌های گروهی از معروف در تحقیقات بیشینه است. بنابراین دو روش معروف در گروهی کردن یعنی بگینگ و بیشینه در برای روش پیش‌نهادی و همچنین طبقه‌بندی کننده منفرد SVM ارزیابی می‌شوند. روش بگیگن در دو حالت دست‌کاری بر روی داده‌های آموزشی و پیش‌گهای ورودی نشان داده‌شد است. بنابراین نتایج 4 روش طبقه‌بندی مورد نظر در جدول 6 آمده است.

جدول 6: نتایج ارزیابی دقت روش‌های SVM (و جدول 7) تکرار ارزیابی دقت روش‌های SVM را برای هر دو مجموعه داده نشان می‌دهد.

مطالب تحقیق دقت گلی تمام روش‌های گروهی بیشتر از طبقه‌بندی کننده منفرد SVM است. همچنین در هر دو داده فرایشی و پلاریمتربیک دقت روش پیش‌نهادی از سایر روش‌های جمعی بالاتر است.

1 User Accuracy
2 Overall Accuracy
جدول ۶: مشخصات روش‌های مورد بررسی در دسته آزمایش‌های اول

<table>
<thead>
<tr>
<th>توضیحات</th>
<th>نام روش</th>
</tr>
</thead>
<tbody>
<tr>
<td>طبقه‌بندی کندنه منفرد به روش مانشین بردار پشتیبان</td>
<td>SVM</td>
</tr>
<tr>
<td>روش گروهی SVM با دست کاری فضای ویژگی ورودی</td>
<td>BF SVM</td>
</tr>
<tr>
<td>روش گروهی SVM با دست کاری نمونه‌های آموزشی</td>
<td>BT SVM</td>
</tr>
<tr>
<td>بروزگر سرویس متدی در روند آموزش</td>
<td>BS SVM</td>
</tr>
<tr>
<td>بدست آوردن (روش گروهی) SVM با تولید ماتریس تصادفی</td>
<td>SVRMs</td>
</tr>
</tbody>
</table>

عملکرد بدته نسبت به روش‌های بین‌گنگ در داده‌های آموزشی، بین‌گنگ در فضای ویژگی ورودی و روش بوسیتینگ دارد. با تغییرهای به‌دست‌کلاسیکی روش‌ها عملکرد مطلوب روش پیشنهادی در پیشرفت کلاسیکی موردبررسی مشخص می‌شود. از این ۱۸ کلاس کلاس دقت بالاتری در روش پیشنهادی دارند (دقت پیشنهادی در جدول با رنگ‌های بنفش مشخص شده است) و در ۵ کلاس دیرگز نیز نسبت به عملکرد پیشنهادی در سایر روش‌ها هستند. همان‌طور که پیشتر نیز گفته شد کلاس‌های ۱ و ۳، ۳ و ۵، ۴ و ۶، ۷ و ۹ و ۱۰ گلهای کلاس در دقت بالاتری در کلاس‌های دیگر دارد. گلهای (الف) نقشه خروجی و (شکل ۶) شکل (۷) نقشه خروجی پیشنهادی را نشان می‌دهند. مطلق این خروجی روند به‌دست‌نیتیجه‌بی‌خودی مشخص است. این‌ها می‌توانند به‌دلیل گاهی پوششی هستند. روش پیشنهادی به‌طور قابل توجهی کاهش بافته است.

در تصویر فراطبیقی دقت کلی روش پیشنهادی در مقایسه با طبقه‌بندی منفرد ۱۶ درصد افزایش نشان می‌دهد. این افزایش نشان می‌دهد روش پیشنهادی در حل مشکل فضای ویژگی ورودی بیشتر بهتر است. در ۶ و ۳، ۷ و ۴، ۲ و ۱۸ نیز بهتر است. در روش پیشنهادی با سه روش گروهی مکمل عملکرد بهتری داشته است. مطلوب انتظار روش پیشنهادی که تلفیقی از سه روش گروهی دیگر است مراحل هریک را در بر می‌گیرد. در روش‌های گروهی صحت، تپه و انتقال طبقه‌بندی کندنهای پایه رکن مهمی است. در روش پیشنهادی با کاراگیری هیپزمن ویژگی‌های ورودی و داده‌های آموزشی مناسب تپه و استقلال کافی در طبقه‌بندی کندنهای پایه را تضمین می‌کند. همچنین استفاده از روش بوسیتینگ در روند آموزش SVM بسیار تدریجی صحت طبقه‌بندی کندنه پایه را افزایش می‌دهد. این احساس در تصویر فراطبیقی روش پیشنهادی به‌دلیل حروف (۷) و ۱۸ درصد در دقت کلی طبقه‌بندی (OA)

1 Support Vector Machine
2 Bagging-Features-SVM
3 Bagging-Training-SVM
4 Boosting Support Vector Machines
جدول 6: دقت کلاسی (UA) و دقت کلی (OA) طبقه‌بندی داده فراطیفی

<table>
<thead>
<tr>
<th>دقت</th>
<th>SVM</th>
<th>OA</th>
<th>BTSVMs</th>
<th>OA</th>
<th>BFSVMs</th>
<th>OA</th>
<th>BSSVMs</th>
<th>OA</th>
<th>SVRMs</th>
<th>OA</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>32/3</td>
</tr>
<tr>
<td>4</td>
<td>92/92</td>
</tr>
<tr>
<td>3</td>
<td>100/100</td>
</tr>
<tr>
<td>2</td>
<td>100/100</td>
</tr>
<tr>
<td>1</td>
<td>100/100</td>
</tr>
<tr>
<td>0</td>
<td>100/100</td>
</tr>
</tbody>
</table>

شکل 7: خروجی طبقه‌بندی داده فراطیفی؛ (الف) طبقه‌بندی منفرد SVM (ب) روش پیشنهادی (ب) در داده پلاریمتراکی (مجموعه دوم) عملکردی مشابه فراطیفی دیده می‌شود. فضای ویژگی در این داده هم‌مانع از عملکردطلب طبقه‌بندی می‌شود. روش پیشنهادی در دقت کلی حدود 10 درصد نسبت به طبقه‌بندی منفرد افزایش نشان می‌دهد. بهبود عملکرد 3 و 8 درصدی نسبت به سایر روش‌های جمعی در SVM هم در نتایج روش پیشنهادی بهبود قابل‌توجهی داشته است.
5-2 نتایج روش پیشنهادی در پرداز روش‌های
طبقه‌بندی همراه با انتخاب ویژگی

این بخش به مقایسه و تحلیل نتایج روش پیشنهادی در
پرداز استفاده از روش‌های انتخاب ویژگی اختصاص دارد.

همانطور که در مقدمه گفته شد برای مقایسه ابعاد
پیشنهادی در دیگر موفقیت محاسبات با استفاده از
روش‌های انتخاب ویژگی با سه پاسخ خلاصه‌گیری شده‌اند.

در این کشورهای موقت، هرکدام از موارد از
روش‌های انتخاب ویژگی با انتخاب پارامتر اولیه
روش‌های ممکن شمار 100 کروموزوم به‌صورت
تکنیک‌های ایجاد هر کروموزوم از تعداد
تشکیل‌شده است. تعداد هزینه مادی با تعداد
ویژگی‌های ورودی می‌باشد که هر زن در هر کروموزوم
معدل با یکی از ویژگی‌های تصویر است. 1 معدل بودن
و 0 معدل نبودن از ویژگی در راهحل (کروموزوم)
پیشنهادی تصمیق می‌شد. به‌عبارت دیگر، روش پیشنهادی راه‌حلی مناسبی در مسائلی با ابعاد بالایی پیش بیاید و نتایجی است. در داده فراطبیعی روش پیشنهادی حدود ۵ درصد نسبت به پیشین نتیجه در میانگین در هر نسل سیگنال از جنبه‌های این مقایسه هزینه‌های محاسباتی و ژنتیکی ساده‌تر هستند از روش پیشنهادی پیشرفت امری روش‌ها به دلیل عملکرد نامطلوب دقت طبقه‌بندی قابل انکا شده است. نتیجه‌های طبقه‌بندی منفی به‌همراه روش پیشنهادی در این‌کل‌ نشان داده‌ند است. نتایج در کلاس‌های ساختمان و راه در این‌دسته‌های است که در روش پیشنهادی به‌پایه‌ای و به‌طور محدودی در نهایت نیز این موضوع مشخص است.

جدول ۹: دقت طبقه‌بندی داده پلاستیک در روش‌های مختلف انتخاب ویژگی

<table>
<thead>
<tr>
<th>زمان محاسباتی (ثانیه)</th>
<th>دقت کلی</th>
<th>زمان محاسباتی (ثانیه)</th>
<th>دقت کلی</th>
<th>روش انتخاب ویژگی</th>
<th>روش طبقه‌بندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۴۲۸</td>
<td>۹۷/۲۴</td>
<td>۲۳۶۰</td>
<td>۸۹/۷۴</td>
<td>SVRMs</td>
<td></td>
</tr>
<tr>
<td>۱۳۰۵</td>
<td>۹۵/۷۳</td>
<td>۲۴۲۴</td>
<td>۸۴/۲۷</td>
<td>GA</td>
<td>SVM</td>
</tr>
<tr>
<td>۶۵۳</td>
<td>۹۰/۰۱</td>
<td>۱۶۲۱</td>
<td>۷۷/۸۸</td>
<td>CFS</td>
<td>SVM</td>
</tr>
<tr>
<td>۴۱</td>
<td>۸۹/۶۷</td>
<td>۱۸۹۰</td>
<td>۷۹/۷۷</td>
<td>کای-دو</td>
<td>SVM</td>
</tr>
</tbody>
</table>
6- نتایج گیری و پیشنهادها

در این مطالعه به منظور بهره‌برداری از الگوریتم‌های پیشنهادی در پیش‌بینی طبقه‌بندی صحت روش پیشنهادی در برای‌روش‌های مختلف طبقه‌بندی SVM متمایز از روش‌های ارائه‌شده در نظر گرفته شد. روش‌های دست‌گیری از طبقه‌بندی کننده‌ای پایه تشکیل‌شده‌اند که در ساخت تجییه آنها تجربی‌های تهیه‌شده در نظر گرفته شده و سیستم‌های نهایی را ناشان می‌دهند. نحوه تولید این طبقه‌بندی‌ها باید توجه نشان ناپایدار نباشد. در مواردی که در تحقیقات قبلی ارائه شده بوده، طبقه‌بندی‌های کننده‌ای پایه تشکیل‌شده‌اند که در ساخت تجییه آنها تجربی‌های تهیه‌شده سیستم‌های نهایی را ناشان می‌دهند.

7- نتایج تحقیق

روش‌های طبقه‌بندی

روش پیشنهادی در برای‌روش‌های مختلف طبقه‌بندی SVM متمایز از روش‌های ارائه‌شده در نظر گرفته شد. روش‌های دست‌گیری از طبقه‌بندی کننده‌ای پایه تشکیل‌شده‌اند که در ساخت تجییه آنها تجربی‌های تهیه‌شده در نظر گرفته شده و سیستم‌های نهایی را ناشان می‌دهند. نحوه تولید این طبقه‌بندی‌ها باید توجه نشان ناپایدار نباشد. در مواردی که در تحقیقات قبلی ارائه شده بوده، طبقه‌بندی‌های کننده‌ای پایه تشکیل‌شده‌اند که در ساخت تجییه آنها تجربی‌های تهیه‌شده سیستم‌های نهایی را ناشان می‌دهند.

3-5- نتایج روش پیشنهادی در برای‌سایر

روش‌های طبقه‌بندی

روش پیشنهادی در برای‌روش‌های مختلف طبقه‌بندی SVM متمایز از روش‌های ارائه‌شده در نظر گرفته شد. روش‌های دست‌گیری از طبقه‌بندی کننده‌ای پایه تشکیل‌شده‌اند که در ساخت تجییه آنها تجربی‌های تهیه‌شده در نظر گرفته شده و سیستم‌های نهایی را ناشان می‌دهند. نحوه تولید این طبقه‌بندی‌ها باید توجه نشان ناپایدار نباشد. در مواردی که در تحقیقات قبلی ارائه شده بوده، طبقه‌بندی‌های کننده‌ای پایه تشکیل‌شده‌اند که در ساخت تجییه آنها تجربی‌های تهیه‌شده سیستم‌های نهایی را ناشان می‌دهند.

1 Sigmoid
کاهش پیچیدگی ضرایب ویژگی در مقایسه با روش‌های اختیار ویژگی مهم که در کار
طبقه‌بندی کننده SVM استفاده می‌شوند مقایسه شد.
نتایج عملکرد مطلوب روش پیشنهادی به
دقت کلی در طبقه‌بندی و هزینه محاسبات را نسبت به سایر روش‌ها نشان داد.
بخش نمودار می‌شود.
نتابع روش طبقه‌بندی پیشنهادی در برای
طبقه‌بندی دیگر همچون جنگل تصادفی، شبکه عصبی
و بیشترین شاهد ویژارک ارزیابی شد که نتایج
عملکرد مناسب روش پیشنهادی را تصدیق می‌کرد.
نتایج روش پیشنهادی بر روی دو داده با فضای ویژگی
با ارزیابی شد.
داده فراطیفی
زمان محاسباتی (ثانیه)
۱۴۲۸
۹۰۰
۹۲۲
۵۶۱
دقت کلی
۹۷/۳۴
۹۴/۷۱
۸۸/۵۲
۷۹/۷۵
روش طبقه‌بندی
SVRMs
Random Forest
Neural Network
ML/Wishart
دقت کلی
۸۹/۷۴
۸۷/۸۱
۸۳/۱۲
۷۴/۳۱
داده پیلاریمتریک
زمان محاسباتی (ثانیه)
۲۳۶۰
۱۸۵۴
۱۷۶۱
۶۵۵
دقت کلی
۱۰
۳۶۰
۲۳۶۰
۲۴۵
[1] D. Landgrebe, "Hyperspectral image data
sensing," University of Maryland, 2012.
Bremananth, "Spectral material mapping
using hyperspectral imagery: a review of
spectral matching and library search
methods," Geocarto International, Vol. 28,
imaging: from basics to applications, CRC
New Method for Land Cover
Characterization and Classification of
Polarimetric SAR Data Using Polarimetric
Signatures", Selected Topics in Applied
Earth Observations and Remote Sensing,
IEEE Journal of, Vol . 8, pp. 3595-3607,
2015.
novel algorithm for land use and land cover
classification using RADARSAT-2
polarimetric SAR data," Remote Sensing of
[7] M. Jafari, Y. Maghsoudi, and M. J. V. Zoej,
"Analyzing polarimetric signatures for
different features in polarimetric SAR data,
" in Geoscience and Remote Sensing
Symposium (IGARSS), 2014 IEEE
Maghsoudi, "Knowledge-based
Classification of Polarimetric SAR data
using Support Vector Machine-Decision
Tree (SVM-DT)," Journal of Geomatics
150

Support Vector Random Machines (SVRMs), A Optimum Multiclassifier for Big Data

Mohsen Jafari 1, Mehdi Akhoundzadeh 2

1- PhD. Student, Remote Sensing Department, Faculty of Surveying and Geoinformation Engineering, College of Engineering, University of Tehran
2- Assistant Professor, Remote Sensing Department, Faculty of Surveying and Geoinformation Engineering, College of Engineering, University of Tehran

Abstract

Although, the distinction between the land cover classes was increased in large feature space of remote sensing images, but the low number of training data prevent this. In order to solve this problem, ensemble classification methods can be used instead of individual classifiers. In this paper, a new method for ensemble support vector machine was proposed called “Support Vector Random Machines (SVRMs)”. In proposed method, bootstrap was produced using modification of training data and feature space. Simultaneous boosting SVM was used for basic classifiers. Then, classification map was resulted using SVM fusion of basic classifier. Hyperspectral and Polarimetric SAR data was chosen for evaluation performance of the SVRMs. Experiments were evaluated from three different points of view: First, evaluation against other ensemble SVM methods; second, evaluation against various feature selection methods in classification and third, evaluation against the various basic and new classification methods. As the results, proposed method is 16% better than the individual SVM classifier in hyperspectral data and this is 10% in PolSAR data. Also, the classification results of SVRMs in various classes compared to other SVM ensemble method were improved. The results reported from the proposed method compared to the other feature selection method (Genetic Algorithm) has the effectual performance in classification. The results show that the proposed method presents a better performance compared to the basic classification methods (maximum likelihood and wishart) and advanced classification (random forest and neural network).

Key words: Support Vector Machine (SVM), Ensemble method, Feature space, Bootstrap, Aggregation.

Correspondence Address: Remote Sensing Department, Faculty of Surveying and Geoinformation Engineering, College of Engineering, University of Tehran, Iran.
Tel: +98 9366153637
Email: jafarim@ut.ac.ir