تصحيح خودکار های تفاوت ماهوارهای rpc

توسط مدل های رقمی ارتفاعی irs-p5

چکیده

یکی از راهکارهای اساسی در تولید و بررسی‌های داده‌های مکانی از جمله مدل‌های رقمی ارتفاعی استفاده از تصاویر پویا (DEM) استفاده از تصاویر پویا ماهوارهای جدید باعث افزایش دقت و پوششی از مناطق بیشتری می‌شود. در این مطالعه، کاربرد RPC ها در ارایه تصاویر ماهوارهای DEM، حافظه کامپیوتر و سیستم عاملی مورد بررسی قرار گرفت که نشان داد که دقت تصاویر RPC ها به پیشنهاد ۲/۵ بیشتر می‌باشد نسخه دو بعدی irs-p5 می‌توان به دقت حدود یک پیکسل با بهترین دقت ممکن از این تکنیک استفاده نماید.

کلیدواژه‌ها: تصویر ضرایب rpc، مدل رقمی ارتفاعی، تصاویر ماهوارهای irs-p5، نمایش‌پذیری ۲/۵ بی‌دید

Email: amin.al65@gmail.com.

شهريار علمی پژوهشی مهندسی فناوری اطلاعات مکانی
سال دوم، شماره سوم، پاییز ۱۳۹۳
Vol.2, No.3, Autumn 2014
75-90

تأیید کننده: امین علی‌زاده ناتینی، صفا خزائی، حسین عاطفی، ایوب حجت‌زاده

1- استادیار، گروه مهندسی نفت‌پزشکی، دانشگاه اصفهان، اصفهان
2- استادیار، گروه مهندسی عمران، دانشگاه جامع امام حسن(ع)، تهران
3- استادیار، دانشگاه مهندسی نفت‌پزشکی، دانشگاه اصفهان، اصفهان
4- دانشجویی، کارشناسی ارشد، دانشگاه مهندسی نفت‌پزشکی، اصفهان، اصفهان

تاریخ دریافت مقاله: ۱۳۹۳/۰۷/۰۳ تاریخ پذیرش مقاله: ۱۳۹۳/۱۲/۰۳
رآ تصحیح کننده برای جیران و حذف خطاهای مربوط به که یا ها باید از بکسی تا راه انجام گرفته که از طریق نقشه‌برداری زمینی از جمله مشاهدات تفاصلی (GPS) جمع‌آوری شده‌اند. استفاده کرده‌ایم. این روش هم‌اکنون محققان نیز ادامه آن هستند تا تعداد ترم‌های پیشنهاد و نقاط کنترل زمینی لازم برای تصویر را پیدا کنند [۳].

با توجه به نقاط کنترل زمینی باید یک دستگاه اساسی ورودی است که در ادامه به آن اشاره خواهد شد. مشکل اول و اساسی عدم دسترسی به این گونه نقاط در بخش مناطقی از جمله مناطق مرزی و صعب‌العبور است. مشکل دوم، به زمان و بهینه‌های ممکن، جمع‌آوری و پدیدارسی به راحتی بر شدن و بهینه‌بر شدن فاکتورهای مختلف از جمله زمینی از مرحله نمودن خواعد شد. لازم به ذکر است که تعداد زمینی اصلاح نموده است و تهیه و تولید نقشه در این فاصله انجام شود. مشکل سوم، واپسگی دقیق محدودیت‌ها زمینی از جمله تصویر زمینی مرحله به دقت نقاط کنترل زمینی است. محقق (RPC) زمینی و ترسیم سازمان‌های خصوصی‌های ممکن که که این امر از جمله، در اینجا باید چهارم در ارتباط با پیدا کردن نقطه‌های منطقه کنترل زمینی روی مکس است که به راحتی می‌شود. این است که به فرم‌های فاکتورهای ترسیم نموده را نیز به دلیل نیاز به tutorials از راه‌های متفاوت خارج وضع می‌کنند.

پس از درست‌گیری دستورالعمل برخورداری این آزمایشات داده‌های دسترسی کامل (P5) مورد نظر این تحقیق به دلیل دسترسی کامل سازمان جغرافیایی نیروهای مسلح به آن ممکن و حدود چند ده کیلومتر (۲۳۱۲ متر) است [۴] که بسیار قابل ملاحظه است. نتایج در روش‌های دسته دوم، محققان معمولاً دلایل این هستند که به نحوی RPC کارآمد به‌منظور تصحیح خودکار ضریر می‌باشد.

1. Orthophoto
2. Digital Elevation Model
3. Rational function model
4. Rational polynomials
5. Global Positioning System
 تصویر ماهواره‌ای با دقت مکانی زیرالبکسل با کمی بر استفاده از DEM های موجود و بدون نیاز به

شکل ۱: مدل‌های چندجمله‌ای نسبی

برای رفع مشکلات مذکور، محققین تلاش نموده‌اند تا با تکیه بر یکسایی اطلاعات مداری ماهواره [۵] با داده‌های مکانی موجود و رایگان از منطقه و بدون نیاز به نقاط کنتل زمینی متصل به سیستم تصویر ماهواره‌ای با تکیه بر داده‌های مکانی موجود مورد توجه قرار گرفت.

همان‌طور که در شکل ۱ نشان داده شده است، تحقیقات سیستم پذیرفته در این جهت با التهاب USGS (GCPs) با تکیه بر اطلاعات مداری ماهواره به چهار دسته کلی تقسیم گرد. در گروه اول، تصویر از منطقه به‌طور داده می‌شود. بعنوان مثال در تصویر ۱، برا روش دوم روش دوم روش دوم روش دوم روش دوم روش دوم روش ۲ یک رویکرد ارسال راهنمایی محور به‌طور اکثریت از دقت ارتفاع را

---

۱ Relative edge cross correlation
۲ United states geological surveys
به proving به خصوص از نظر مطالبه با داده‌های SRTM، این مدل می‌تواند به جای داده‌های RPC پیش‌گرفته شود. البته این مدل ممکن است برای استفاده بهتر با داده‌های RPCپیش‌گرفته در نظر گرفته شود.

در سال 2016، سیستم‌های RPC به عنوان متدی جزئی از سیستم‌های ارزیابی از سیستم‌های ارزیابی از سیستم‌های باز کار گرفت. این متد در حال حاضر به عنوان یک متد اصلی به عنوان یک متد اصلی به کار می‌رود. البته این متد ممکن است برای استفاده بهتر با داده‌های RPC پیش‌گرفته در نظر گرفته شود.

داهندهای داده‌های از دامنه‌های RPC به این ترتیب استفاده می‌شوند. این متد در حال حاضر به عنوان یک متد اصلی به کار می‌رود. البته این متد ممکن است برای استفاده بهتر با داده‌های RPC پیش‌گرفته در نظر گرفته شود.
چکیده

روحیه‌های داده‌های ارتباطی (RPC) یک استفاده از مدل توابع هندسی‌های کسری (B,L,H) رابطه بین یک نقطه روی تصویر و نقطه نظیرش را از طریق نسبت دو چندجمله‌ای که درجه سه مشخص می‌کند (رابطه 1).

رابطه 1

\[ I = \frac{P_1(B,L,H)}{P_2(B,L,H)} \]

روش تنظیم‌بانی 2.5 بعدی استفاده‌های DEM با استفاده از این روش تنظیم‌بانی و نیز به رستر به‌جای ابتدا نقاط از طرف دیگر، روش پیشنهادی با سرعت و دقت بالاتری قادر به مدیریت داده‌های ارتباطی (DEM) با حجم بالا خواهد بود.

1- در همه تحقیقات پیشین مربوط به روش جهانی از دیدگاه تنظیم‌بانی به سطوح نسبی و سطح مطلوب استفاده‌اش فرهنگی در ایران از این تحقیقات برای اولین بار از یک روش تنظیم‌بانی از این روش تنظیم‌بانی و نیز DEM رستر به‌جای ابتدا نقاط از طرف دیگر، روش پیشنهادی با سرعت و دقت بالاتری قادر به مدیریت داده‌های ارتباطی (DEM) با حجم بالا خواهد بود.

2- در این تحقیق، بدون نیاز به هیچ نوعی کنترل

\[ s = S_0 + S_1 \left( \frac{\partial K}{\partial \varphi} \right) + S_2 \left( \frac{\partial K}{\partial L} \right) \]

\[ l = l_0 + l_1 \left( \frac{\partial f}{\partial \varphi} \right) + l_2 \left( \frac{\partial f}{\partial L} \right) \]

قضیه نرم‌البدویه و سیستم تصویر زمین‌شناسی می‌پاشند که بردار مجهول را تشکیل می‌دهند.

که در این رابطه \( k \) و \( J \) بیانگر معادلات اول و دوم در تابع رسال (رابطه 1), \( s \) و \( l \) مختصات تصویر در چهت سیمی و لاین و اندسی‌های 0 و 0 به ترتیب و بیانگر شیفت و مقیاس هستند (B,L,H) مختصات

89
که به ناظوریابی ۲.۵ بعید معروف است در ابتدا از طریق یک اندازه‌گیری دقیق (پایین‌تر) RPC
یک گشایش ریاضی (پایین‌تر) ۱) بین فضاهای دو بعید زمین و فضاهای دو بعید تصویر است. همان‌طور که مشخص است این مدل از
چیز چند جمله‌ای با چرخه سه تغییر شده است که هر یک از این جندجمله‌های دارای ۲۰ ضریب است;
بنابراین در مجموع ۸۰ ضریب وجود دارد که این ضرایب به صورت
معروف هستند. این ضرایب بدون نیاز به اندازه‌گیری زمین و با تکیه بر اطلاعات
توسط سازمان تصویر پرگیوه تهیه شده و به همراه داده شده است. از این
حاصل زمینی را مگرند. لازم به ذکر است که ۸۰ ضریب جندجمله‌ای
از همان طور که اشاره شد اگرچه مدل‌های کسری
می‌تواند در مواردی جایگزین خوی برای مدل‌های
فیزیکی باشد ولی خطای سالمند قابل پرورشی است.
ویژه مناسب ایان، دقت بازیابی مقدار اسمیت
بین مختصات واقعی نقطه و مختصات بهدست‌آمده از
طرق این چهار ازRPC
تغییر گردد. برای حذف این خطاهای دو راهکار اساسی
وجود دارد که در ادامه به مرکز از آن‌ها اشاره خواهی
شده. در راهکار اول خطاهای به‌وسیله‌ی یک پولی نویس
در فضای خاص از منظر متغیر مدلی و به‌وسیله
پرگیوه تهیه شده است. از این
تغییر گردد. برای حذف این خطاهای دو راهکار اساسی
وجود دارد که در ادامه به مرکز از آن‌ها اشاره خواهی
شده. در راهکار اول خطاهای به‌وسیله‌ی یک پولی نویس

2 National Cartographic Center
3 Mutual matching
4 Mutual information
5 Shannon
تصمیح شکل: های تصاریف ماهواره–ای

امین علیزاده نامی، سهفه حری، حسین عارفی، و...

آرشیفی می‌یابد؛ بنابراین نیت هندسی تصویر به تصویر با سطح به سطح در ارتباط با DEM ها از طریق حداکثر کردن آنتروپی مشترک می‌تواند صورت بی‌دیدر با Bộین جالبرانه، اگر آنتروپی هر یک از تصاویر نیز در نظر گرفته شود به معیار جامعتری دست خواییم یافته که در رابطه با ۴ آورده شده است.

\[ \text{MI}(U, V) = H(U) + H(V) - H(U, V) \]  \hspace{1cm} (۲)

در این رابطه، \( H(U) \) آنتروپی تصویر \( U \) و \( H(V) \) آنتروپی تصویر \( V \) است. بنابراین یک نیت هندسی به همین می‌تواند از طریق حداکثر کردن معیار MI بین دو تصویر حاصل شود. \( P_n \) آنتروپی نتیجه گرفته برای \( n \) پیکسل با احتمالات \( P_n \) تا \( n \) اولین طبقه‌بندی زیر به دست می‌آید:

\[ H = \sum_{i=1}^{n} P_i \log(1/P_i) \]  \hspace{1cm} (۳)

برای محاسبه آنتروپی از هیستوگرام تصویر استفاده می‌شود که در آن هر جزء نتیجه‌برنده احتمال پیکسل‌هایی از سوی دیگر، برای محاسبه آنتروپی مشترک یک باعث از هیستوگرام مشترک دو تصویر استفاده شود. هر چند تصویر به هم شیب می‌برد، ممکن است آنتروپی مشترک آنها در این‌جا خواهد بود. بنابراین اگر دو تصویر نتیجه به هم ثبت هندسی نباشد، پراکندگی هیستوگرام مشترک آنها

\[ 1 \text{ Joint entropy} \]
4- مطالعه موردی

در این بخش در ابتدا در ارتباط با داده‌های مورد استفاده صحت خواهد شد و سپس از طرق تعدادی نقاط کنترل از منطقه‌ی مورد مطالعه و نقاط به ارزیابی روش پیشنهادی

پرداخته خواهد شد.

4-1 داده‌های مورد استفاده

محدوده‌ی مورد مطالعه منطقه‌ای در شمال شرق استان تهران واقع در منطقه‌ی شمیران شهر می‌باشد.

این محدوده نه تنها کوهستانی است بلکه در بخش‌هایی از آن مناطق دشتی و مسکونی تب و مصداق دارد. داده‌های مورد استفاده در این بخش DEM و IRS-P5 زوج تصاویر پویشی سازمان نقشه‌برداری کشور ستند که از آنها شرح داده خواهند شد.

4-2 تصاویر پویشی IRS-P5

شکل ۳: ترتیب تصاویر IRS-P5 از منطقه‌ی مورد مطالعه را نشان می‌دهد. در جدول ۱ اطلاعات مربوط به این تصاویر آورده شده است.

4-3-2 مدل دقیقی ارتفاعی سازمان نقشه- برداری کشور (NCC DEM) این مدل سازمان نقشه‌برداری کشور به شکل است دارای قدرت تفکیک مکانی ۱۰ متر می‌باشد.

میانگین تولید این داده‌ها نشان می‌دهد که [۱] این مدل به‌شکل دقیقی ارتفاعی مرجع کشور کنترل شده و مناسب سطح ارتفاعی آن است.[۱۹]

جدول ۱: ویژگی‌های جدول IRS-P5 مورد استفاده در این تحقیق

<table>
<thead>
<tr>
<th>تصویر راست</th>
<th>تصویر چپ</th>
<th>ویژگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲.۵</td>
<td>۲.۵</td>
<td>قدرت تفکیک مکانی</td>
</tr>
<tr>
<td>۱۰</td>
<td>۱۰</td>
<td>قدرت تفکیک رادیو متریکی (پیت تصویر)</td>
</tr>
<tr>
<td>۱۹NOV2014</td>
<td>۱۹NOV2014</td>
<td>زمان اخذ داده</td>
</tr>
<tr>
<td>۲۶</td>
<td>۵</td>
<td>زاویه تبیت</td>
</tr>
<tr>
<td>۱۲۰۰۰ × ۱۲۰۰۰</td>
<td>۱۲۰۰۰ × ۱۲۰۰۰</td>
<td>اندازه تصویر</td>
</tr>
<tr>
<td>GEOTIFF</td>
<td>GEOTIFF</td>
<td>فرمت تصویر</td>
</tr>
</tbody>
</table>

1 Ice, Cloud, and Land Elevation Satellite
ارزیابی دقت روش پیشنهادی

بمنظور ارزیابی روش ارائه شده در این تحقیق از
پنج نقطه کنترل زمینی که مختصات آنها در
جدول ۲-ا و ۱۲-ا استفاده شده است (شکل ۲-ا).

DGPS لازم به ذکر است که این نقطه از طریق
جمع اوری شده‌اند. همچنین داده‌های لیبری ماهواره
(ایکس‌سی‌اِت) به همراه پنج نقطه کنترل چندنمونه‌ای
از سازمان نقشه‌برداری (نقطه شماره ۵ در جدول ۲-ا)
در ارزیابی روش پیشنهادی مورد استفاده قرار گرفتند.

های سازمان نقشه‌برداری در منطقه مورد
DEM مطالعه از نظر تکمیل شدن داده‌های (شکل ۲-ا) که
می‌باشد این ۹ بخش به‌ نحوی به‌کمک یکی از
PCI Geomatica نرم‌افزاری سنجش از دوری از جمله
موزاییک شونده به‌صورت یکجا در بحث تناظریای
مورد استفاده قرار گرفت. برای این منظور از بخش
استفاده شد وی از انتخابی که نفمه در مزرعه بسیار مشهور بود، تصمیم
گرفته شد تا از راهکار دیگری استفاده گردد.

برای این منظور و بر اساس مشکل، مختصات سه‌بعدی
به‌صورت یکپارچه و ابر نقطه
در نظر گرفته شد و سپس با تغییر بر فن واسطه پایی
پای‌لنینگی این ابر نقطه در نرم‌افزار مطلوب به‌صورت
رنج با همان DEM کپی‌کرده تبدیل شد (شکل ۱۲-ا).

جدول ۲: نقاط چک برای ارزیابی روش پیشنهادی

<table>
<thead>
<tr>
<th>نقطه</th>
<th>X (UTM)</th>
<th>Y (UTM)</th>
<th>Z (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۵۷۶۷۷۷۱.۸۱۹</td>
<td>۳۹۵۰۰۷۱.۹۷۰</td>
<td>۱۶۶۹.۸۵۲</td>
</tr>
<tr>
<td>۲</td>
<td>۵۷۶۱۸۱.۳۱۴</td>
<td>۳۹۵۰۱۸۵.۸۹۱</td>
<td>۱۶۴۲.۵۹۳</td>
</tr>
<tr>
<td>۳</td>
<td>۵۷۵۷۹۳.۵۱۳</td>
<td>۳۹۵۰۱۶۵.۸۵۳</td>
<td>۱۷۱۲.۰۷۳</td>
</tr>
<tr>
<td>۴</td>
<td>۵۷۵۷۰۱.۲۷۳</td>
<td>۳۹۴۹۵۲۹.۸۳۴</td>
<td>۱۶۱۷.۹۵۳</td>
</tr>
<tr>
<td>۵</td>
<td>۵۷۰۵۴۷.۴۶۴</td>
<td>۳۹۶۲۳۰۸.۰۸۶</td>
<td>۲۱۷۲.۸۲۵</td>
</tr>
</tbody>
</table>

۱ Bilinear  
۲ Ellipsoid
بعد از انتخاب زوج تصویر با تکه بر مفهوم نقاط و استفاده از ضرایب DEM ،RPC و PCI Geomatica تولید شد که این مدل در شکل ۵ نمایش داده شد، در فرآیند تولید نقاط گریه به صورت خودکار و با تکه بر روش تناظری فار انتخاب شدند، سپس سرشکنی دسته اشعه با تکه بر RPC و نقاط گریه از صورت پذیرفته و در انتهای نقشه با تکه بر نقاط DEM منطقه با تکه بر نقاط گریه حاصل از مرحله قبیل تولید شد.

شکل ۴: تصویر نسبی و WDEM

شکل ۵: نسبی تهیه شده با استفاده از DEM در مرحله ۵ بعد از است خطا سامان‌های این مدل رقیقی ناشی از خطاهای موجود در RPC ها به دلیل وجود یکسری خطا در جمع‌آوری آنها از جمله خطاها، مرتفع گردید. برای این منظور، GPS/IMU، هم‌طور که قبلاً گفته شد از NCC DEM هم‌طور که قبلاً گفته شد از ذخیره ۷۰-الف نمایش داده شد. استفاده می‌شود. DEM در شکل ۶ نمایش داده شده است. همان‌طور که در این شکل نسبی بر ۶ مطلق نمایش داده شده است. همان‌طور که در این شکل دیده می‌شود این دو DEM نسبی به هم دارای خطای مسطح‌کننده قابل ملاحظه‌ای هستند.

1 Fast Fourier transform phase matching
قدرت تفکیک مکانی بالا (مانند DEM حاصلاً از لیدار) خطای مسطحی را مشخص نمود. سپس باید با اعمال خطای مسطحی بر روی نقاط و به‌دست آوردن موقعیت دقیق آنها، خطای ارتفاعی را از طریق اختلاف ارتفاع نقاط نظر به‌دست آور. هم‌بستر که مشخص است در این حالت علاوه بر خطای ارتفاعی خطای مسطحی نقاط نیز باعث مورد توجه قرار دارد.

 dém همانطور که در شکل 7-B ملاحظه می‌شود، نسبی با دقت بالایی نسبت به مدل رقمی ارتفاعی در فضای دو بعدی توجیه شده است و رنگ خاکستری نشان‌دهنده آن است که یک شفاف ارتفاعی بین دومدل رقمی وجود دارد. برای این منظور و بندا کردن این شفافی ارتفاعی مدل رقمی از یکدیگر کم گرد و میانگین تغییرات را به‌عنوان شفاف ارتفاعی در نظر می‌گیریم. بعد از اعمال این شفافی، مدل رقمی ارتفاعی موردنظر تصویح جواهر شد.

در شکل 8 بخشی از تصویح شده به همرآما نقاط کنترل زمینی نشان داده شده است. همان‌طور که در زیر بخش‌های این شکل نشان داده شده است، روش بیش‌نیاز یافته‌ی پرونده‎‌ی به‌دست آمده در منطقه به شکل، نسبی به‌بودی یافته‌ی مفهومی (به رنگ آبی) DEM زمینی نسبی به‌بودی یافته‌ی منطقه (به رنگ سفید) در کنار ZDEM (به رنگ سرخ) مانند کار ZDEM در نحوه‌ی بازیش داده شده و در یک حالت این دو با تراکم بالایی از نقاط نشان داده شده‌اند. میزان اطباق آنها و موافقتی روش بیش‌نیاز به‌خوبی با داده شده برای پیش‌بینی گردیده و به همراه نیز به‌همراه نقاط چک (علامت ستاره) شناخته شده‌اند. میزان اطباق این دو دم ناش داده شده‌اند. میزان اطباق این دو دم

1. High resolution DEM
2. Lidar

alf: DEM NCC

ب: 7-B مقایسه‌ی DEM نسبی با NCC DEM از نظری‌ای های زمینی در این نما نشان داده شده است که به‌طور دقیق صورت به‌صورت رنگ خاکستری با رنگ صورتی بی‌گیر نسبی و DEM به‌صورت تغییرات صورت رنگ پذیر با در مرحله‌ی اول لازم است با تکیه بر یک

alf: 7-B INCIDENT
با نقاط چک را نشان دهند. همگی توزیع که در شکل 8 مشاهده می‌شود به‌طور ظاهری، ارائه شده به نحوی است که در هر یک نقاطی چک

DEM اطمینان بسیار بالایی بین بهبود یافته، DEM
تصحیح خودکار RPC های تصاویر ماهواره‌ای

به‌عنوان بافت‌های اطراف نقطه‌کنترل محور‌های X و Y به ترتیب طول و عرض نقطه در سیستم مختصات WGS84 و محور Z ارتقاء نقاطی از پیش‌آمده است. 

در انتهای این بخش مقایسه‌روش پیشنهادی این تحقیق با سایر روش‌های بازار سرعت آن استفاده و تعداد نقاط کنترل مورد استفاده در تصخیح RPC انجام می‌شود. در ارتقاء با سرعت آن استفاده، برای ارائه نمونه‌ی تصخیحات صورت یکپارچه که توجهی به محدودیت بعضاً سه‌بعدی انجام می‌شود

در این تحقیق از یک روش نیازمندی 2.5D استفاده شد. با استفاده از روش نیازمندی به‌جای هوای روش های تناظری به‌هیله‌ی از بکارگیری و رستر به‌جای کردن روش پیشنهادی بای سرعت و دقت بالاتری قدرت به مدیریت داده‌های ارتقاء (DEM) داده‌های (DEM) با حجم بالا خواهد بود و 2.20.

از این تحقیق با تصخیح RPC این به تکیه بر نقطه کنترل زمینی و مقایسه‌ی آن با روش پیشنهادی،

جدول 3: محاسبه شده برای نقاط کنترل استفاده شده

<table>
<thead>
<tr>
<th>نقطه کنترل</th>
<th>شرایط استفاده</th>
<th>RMSE (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ارزیابی</td>
<td>تمامی نقاط Colin استفاده و نقاط ICESAT</td>
<td>2.6666</td>
</tr>
<tr>
<td></td>
<td>یبیل نقاطی</td>
<td>1.7200</td>
</tr>
<tr>
<td>ICESAT</td>
<td>نقاطی موجود از منطقه</td>
<td>2.7117</td>
</tr>
</tbody>
</table>

RMSE (Root mean square error)


Automated bias compensation of RPCs of IRS-P5 satellite images using DEM

Amin Alizadeh Naeini, Safa Khazaie, Hossein Arefi, Abolfazl Jamshidzadeh

Abstract
Overlapping satellite images are one of the key solutions in both generating and updating of spatial data like digital elevation model (DEM). To do this, rational polynomial coefficients (RPCs), as an essential Meta data for satellite images, are regularly used. Nonetheless, these coefficients due to some systematic errors in their gathering lead to an erroneous DEM. Accordingly, in this study a new method is proposed to make it possible to obtain an accurate DEM using automated bias compensation of the RPCs in object space. In this method, RPC biases on the resulting DEM are nearly removed using a 2.5D matching procedure between IRS-P5 derived DEM and the national-cartographic-center DEM (NCC DEM). The experimental results of this study showed that using both 10-meter NCC DEM and stereo images of IRS-P5 satellite images can achieve about one pixel level of accuracy or better in both DEM generating and updating.

Key words: Bias compensation of the RPCs, DEMs, IRS-P5 satellite images, 2.5 matching