Research Article

Adsorption of BTEX on Surfactant Modified Granulated Natural Zeolite Nanoparticles: Parameters Optimizing by Applying Taguchi Experimental Design Method

1. Laleh Seifi,
2. Ali Torabian,
3. Hossein Kazemian,
4. Gholamreza Nabi Bidhendi,
5. Ali Akbar Azimi,
6. Shapoor Nazmara and
7. Mohammad Ali Mohammadi

Article first published online: 13 OCT 2011

DOI: 10.1002/clen.201000390

Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Issue

CLEAN – Soil, Air, Water

doi:10.1002/clen.201000390

Author Information

1
Faculty of Environment, University of Tehran, Tehran, Iran

2
Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Canada

3
Department of Environmental Health Engineering, School of Public Health and Institute of Public Health Research, Tehran University of Medical Sciences, Tehran, Iran

Email: Hossein Kazemian (hossein.kazemian@uwo.ca)

*Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON, Canada ON N6A 5B9.

Publication History

1. Issue published online: 13 OCT 2011
2. Article first published online: 13 OCT 2011
3. Manuscript Accepted: 7 JAN 2011
4. Manuscript Revised: 1 DEC 2010
5. Manuscript Received: 12 SEP 2010

• Abstract
• Article (/doi/10.1002/clen.201000390/full)
• References (/doi/10.1002/clen.201000390/references)
• Cited By (/doi/10.1002/clen.201000390/citedby)

View Full Article (HTML) (/doi/10.1002/clen.201000390/full) Enhanced Article (HTML)

Keywords:
Adsorption; BTEX; Granulated nanozeolite; Optimization; Surfactant-modified adsorbents; Taguchi method

Abstract

In this paper a novel adsorbent developed by means of granulating of natural zeolite nanoparticles (i.e., clinoptilolite) was evaluated for possible
Studies were conducted using a Taguchi statistical approach. The results ascertained that initial pH of the solution was the most effective parameter. However, the low pH (acidic) was favorable for BTEX adsorption onto the developed adsorbents. In this study, the experimental parameters were optimized and the best adsorption condition by determination of effective factors was chosen. Based on the SN ratio, the optimized conditions for BTEX removal were temperature of 40°C, initial pH of 3, TDS of 0 mg/L, and MTBE concentration of 100 μg/L. Under the optimized conditions, the uptake of each BTEX compounds reached to more than 1.5 mg/g of adsorbents.

More content like this

Find more content:

- like this article (/advanced/search/results?
 articleDoi=10.1002/clen.201000390&scope=allContent&start=1&resultsPerPage=20)

Find more content written by:

- Laleh Seifi (/advanced/search/results?searchRowCriteria[0].queryString="Laleh
 Seifi"&searchRowCriteria[0].fieldName=author&start=1&resultsPerPage=20)
- Ali Torabian (/advanced/search/results?searchRowCriteria[0].queryString="Ali
 Torabian"&searchRowCriteria[0].fieldName=author&start=1&resultsPerPage=20)
- Hossein Kazemian (/advanced/search/results?searchRowCriteria[0].queryString="Hossein
 Kazemian"&searchRowCriteria[0].fieldName=author&start=1&resultsPerPage=20)
- Gholamreza Nabi Bidhendi (/advanced/search/results?searchRowCriteria[0].queryString="Gholamreza Nabi
 Bidhendi"&searchRowCriteria[0].fieldName=author&start=1&resultsPerPage=20)
- Ali Akbar Azimi (/advanced/search/results?searchRowCriteria[0].queryString="Ali Akbar
 Azimi"&searchRowCriteria[0].fieldName=author&start=1&resultsPerPage=20)
- Shapoor Nazmara (/advanced/search/results?searchRowCriteria[0].queryString="Shapoor
 Nazmara"&searchRowCriteria[0].fieldName=author&start=1&resultsPerPage=20)
- Mohammad Ali Mohammadi (/advanced/search/results?searchRowCriteria[0].queryString="Mohammad
 Ali Mohammadi"&searchRowCriteria[0].fieldName=author&start=1&resultsPerPage=20)
- All Authors (/advanced/search/results?searchRowCriteria[0].queryString="Laleh Seifi" "Ali Torabian" "Hossein Kazemian" "Gholamreza Nabi Bidhendi" "Ali Akbar Azimi" "Shapoor Nazmara" "Mohammad Ali Mohammadi"&searchRowCriteria[0].fieldName=author&start=1&resultsPerPage=20)