A Mathematical Model for the Determination of Debris Deposition Magnitude by a Landslide

Mohammad Ebrahim Banihabib
Department of Irrigation and Drainage Engineering, University of Tehran, Tehran, Iran.
banihabib@ut.ac.ir

ABSTRACT
The landslide hazard area is not only where it starts but also where its debris deposits. A model is required for the determination of the extent of its deposition. A mathematical model is proposed based on the debris flow concept for the sizing a landslide deposition and it examined for the Seymareh landslide (Seimareh in some other literatures). Seymareh landslide was occurred in the mountainous area of Zagros range in west of Iran in 11000 years ago. The dynamic characteristics of the Seymareh landslide are discussed in this paper. Possible dynamic of the landslide was deliberated based on the limited available data. The landslide triggered from the sharp slope of mountain and its debris progressed kilometers on the inverse mild slope of the plain. A mathematical model is proposed to simulate dynamic and deposition of the debris of the landslide on inverse slope. The model is applied to simulate deposition of debris flow on Seymareh syncline. The result of model denotes that the size of simulated deposition is close to observed one in the Seymareh landslide. Therefore, the capability of the proposed mathematical model is proven by comparing to field data.

Keywords: Mathematical Model, Seymareh Landslide, Zagros Range, Seimareh, Iran, Debris Deposits.

1. INTRODUCTION
Landslides are widespread occurrence in sharp lands of Zagros range, in the west of Iran. Field evidences show a large mass movement in the Seymareh area and Harison and Falcon (1936-8) regarded it as a landslide. Seymareh area is a part of the mountainous area of Zagros range in west of Iran. Harrison & Falcon assessed the volume of the initial landslide of Seymareh as 20 Gm³ has been mentioned in recent papers (e.g. Legros 2002; Hancox & Perrin 2009). About 38 Gm³ of initial rock slid in the Seymareh area. In this regard, it may be considered as one of the largest non-volcanic landslide in the world (Roberts and Evans, 2013). Roberts and Evans (2013) stated the Seymareh Landslide as a rock avalanche which can be questionable its travel-distance as long as 12 on an inverse slope in the absence of water. Therefore, in this paper, its dynamic is examined as debris flow.

Sharp slopes of mountain can slide and creep during storms or sudden melting of snow. In some literature, the phenomenon mentioned as debris slides and rock avalanche. Debris slides are the movement of relatively unconsolidated soil that contains of various kinds of rock rubbles and the other fine earth material. They are usually unsaturated and what distinguished then from debris avalanches is the fact that they have a lower moisture content (Mainali & Rajaratnam 1991). As the material travels down the slope, it accumulates moisture and gets saturated, the ratio of water volume to solid volume rises. In these conditions, it is named debris flow or mudflow (Swanson, 1971 and 1974). Hirano and Moriyama (1993) explained different condition for the occurrence of debris flow. Debris flow occurs on a sharp slope when the soil of the slope is saturated and surface flow appears due to heavy rainfall. Hirano and Moriyama (1993) showed that debris flow will happen when rainfall exceeds a definite value determined by the hydraulic, geological and topographic properties of the slope. Occurrence of debris flow may have various explanations, but after it starts moving, it may be considered as high-concentration flow (Banihabib, 1997). The olumetric concentration of solids in it may exceed 50% (Banihabib, 1997). The high-concentration of fine material increase bulk density of fluid and hence it may carry large stone easily. Many cases have been described that debris flow transported rock blocks up to 1500 cubic meters in size in Tajikistan (Maslov, 1987).
Debris flow flashes down the sharp slope and slow down on a mild slope or inverse slope. Slowing of debris flow on the mild slope or the inverse slope causes deposition of debris. Banihabib (1998) discussed a mathematical model for two-dimensional simulation of debris deposition. Probably the Seymareh landslide occurred between 8710 and 9800 years BP (Roberts and Evans, 2013). It is impossible to get the accurate data that the two-dimensional model need for simulation. In this paper, another model is proposed to determine size of deposition. The model needs a few data to predict the size of the deposition area, and it can be applied for Seymareh area.

2. THE STUDY AREA

First, the geography and geology of Seymareh area is described to have an image of the study area (Shoaei and Ghayoumian, 1997). The study area is in the southeast part of Lorestan Province, at 33° 0’ to 33° 15’ latitude and 40° 30’ to 40° 40’ longitude. The area is bounded by Kabirkuh anticline in South, Dughfurush and Kuh-i-Maleh anticline in North. The study area is part of Seymareh basin. The Seymareh basin is a syncline which Kashkan and Seymareh rivers flow it along aforementioned anticlines. Asmari Limestone of Dughfurush and Kuh-i-Maleh forms northeastern and northwestern walls of the syncline. Kuh-i-Maleh anticline is composed of a series of marl and shale formations. The highest scarps of the anticline are Asmari Limestone. The syncline consists alluvial on Fars series. The Cretaceous limestone of Kabirkuh anticline is the base of southern bound of the syncline. On the flank of Kabirkuh anticline lays a zone of layers in which the upper Cretaceous-Eocene marly body has been more rapidly weathered away. The upper layer of Kabirkuh anticline is weathered Asmari Limestone. The upper layers of the limestone are weathered and may be saturated by longtime storm. In this condition, probably the big landslide had happened.

3. MATERIALS AND METHODS

Mechanism of Seymareh Landslide is explained to clarify how it could be started about 11800 years ago. Rainfall could infiltrate weathered material on sharp slope of Kabirkuh anticline. It is difficult to say the degree of saturation of the material just before landslide. The saturation ratio depends on duration of rainfall and meteorological condition. Field observation shows that the toe of the sharp slope of Kabirkuh anticline scoured by river flow. A sharp slope has less stability when its toe is cut. Regarding these facts, two cases are possible. The first possibility is that duration of rainfall was enough long to saturate upper layer of sharp slope and to have surface flow. Cutting of the toe of sharp slope made instability and landslide started. The second possibility is that saturation of material and cutting of the toe was not sufficient to make instability and earthquake caused instability. Then, landslide is initiated. After landslide started and the material flowed down the slope, it gathered moisture and got saturated. Then the ratio of water volume to solid volume gradually increased and soil movement changed to debris flow.

The dimensions of the deposited are described to provide field data for comparison by the proposed model. Roberts and Evans (2013) appraised the debris volume of Seymareh landslide as 44 Gm³ which it initialized from about 38 Gm³ of initial rock. The plan of the landslide is drawn based of stereoscopic study of aerial photos and field investigation (Fig 1). A slid with length of 5000m and width of 16000m moved down sharp slope of Kabirkuh anticline (Shoaei and Ghayoumian, 1998). The thickness of slide varies from 300m to 400m. The average angle of the slope is 18°. The mass of slid moved down and changed to debris flow by getting moisture. It crossed Seymareh River and transported debris more than 12000m. The average width of deposited area is about 18000m. In debris flow direction, the Seymareh syncline has inverse slope of about 3°. The deposited materials are loamy material with inclusions of crushed rock and large rock fragment.

4. RESULTS AND DISCUSSION

4.1. THE FEATURES OF SEYMAREH LANDSLIDE

Since thousands years have been passing from Seymareh Landslide occurrence, limited characteristics of it may be investigated. However, data and evidences can be described and discussed in three classes: Geography and geology of the area, Mechanism of the landslide, Dimensions and the material of the landslide. The most part of investigation for collecting data has been done by field study and examining possible conditions of the landslide.

4.2. THE PROPOSED MODEL

As a debris flow leaves sharp slope and come into inverse slope, it reduces speed and deposits debris. Debris flow parameters may change in three directions. Thus, debris flow should be considered as a three-dimensional phenomenon. But, since accelerated flow by sharp slope debris flow has dominant velocity in the sharp slope direction, it usually extents in that direction and variation of flow parameter may be ignored in vertical and transversal directions. Also, debris flow accelerates in the direction of sharp slope. In the case, one-dimensional model may be used to apply model practically.
The process of the debris flow on an inverse slope is shown schematically (Fig 2). Debris flow may be defined by a velocity in slope direction and depth when it leaves sharp slope. On the inverse slope, flow depth varies in flow direction. Thus, it may be modeled by trapezoidal shape.

The control volume of I-II is used for the study of momentum balance (Fig 2). Upstream bound of control volume is the vertical line on the point of slope variation. Using the control volume, conservation of mass may be expressed as:

\[
\frac{d}{dt} \left[\frac{h + h_f}{2} x B_d \right] = u_s h_s B_s
\]

or,

\[
\frac{h + h_f}{2} x B_d = u_s h_s B_s t
\]

where \(t \) is time, \(h \) is depth of flow, \(h_f \) is depth of front of a debris flow front, \(x \) is distance traveled by the debris flow, \(B_d \) flow width on inverse slope, \(u_s \) is flow velocity at upstream of the change slope, \(h_s \) is flow depth at upstream of the change slope, \(B_s \) flow width on at upstream of the change slope.

The accumulation of mass within the control volume equals to mass entering inverse slope (Equation 1). The rate of accumulation of momentum within the control volume equals to summation of net rate of momentum entering control volume and the result of forces acting on control volume. The conservation of momentum may be expressed as:
\[
\frac{d}{dt} \left(\frac{h + h_r}{2} \rho u B_d \right) = \rho q_{i} B_d u_{i} \cos (\theta_{i} + \theta_{d}) - \frac{h + h_{r}}{2} x B_d \rho g \sin \theta_{d} + \frac{1}{2} \rho g h_{i}^2 \cos \theta_{i} \cos (\theta_{i} + \theta_{d}) - \rho \frac{u^2}{\phi} x B_d.
\]

where the left-hand side of Equation (3) is rate of momentum accumulation in control volume, the first term of the right-hand side expresses the input of momentum to control volume, the second is force due gravity, and the fourth is the friction at the bottom; \(u\) is flow velocity on inverse slope, \(\rho\) is apparent density of debris flow, \(q_{i}\) is debris flow discharge per unit width, \(\theta_{u}\) is slope angle of upstream channel, \(\theta_{d}\) is slope angle of downstream channel, acceleration due gravity, \(\phi\) is flow velocity coefficient of debris flow and it is defined as:

\[
\phi = \frac{u}{u_{*}}
\]

Substituting Equation (2) in Equation (3) one obtains:

\[
\frac{d}{dt} \left(u_{*} B_d \rho u t \right) = \rho q_{i} B_d u_{i} \cos (\theta_{i} + \theta_{d}) - u_{*} B_d \rho g \sin \theta_{d} + \frac{1}{2} \rho g h_{i}^2 \cos \theta_{i} \cos (\theta_{i} + \theta_{d}) - \rho \frac{u^2}{\phi^2} x B_d.
\]

or,

\[
\frac{du}{dt} + u = \frac{\rho q_{i} B_d u_{i} \cos (\theta_{i} + \theta_{d})}{\rho u_{*} B_d} - u_{*} B_d \rho g \sin \theta_{d} + \frac{1}{2} \rho g h_{i}^2 \cos \theta_{i} \cos (\theta_{i} + \theta_{d}) - \rho \frac{u^2}{\phi^2} x B_d.
\]

Using quasi-steady assumption and Equation (2), Equation (6) may be written a:

\[
\frac{du}{dt} + u = \frac{u_{*} \cos (\theta_{i} + \theta_{d})}{t} \left[1 + \frac{g h_{i} \cos \theta_{i}}{2 u_{*} B_d} \right] - 2 g \sin \theta_{d}.
\]

This differential equation may be integrated as:

\[
u = \frac{u_{*} \cos (\theta_{i} + \theta_{d})}{t} \left[1 + \frac{g h_{i} \cos \theta_{i}}{2 u_{*} B_d} \right] - 2 g \sin \theta_{d}\]

The distance traveled by the debris flow may be determined by integration of Equation (8) as:

\[
x = -\frac{1}{2} g \sin \theta_{d} + u_{*} \cos (\theta_{i} + \theta_{d}) \left[1 + \frac{g h_{i} \cos \theta_{i}}{2 u_{*} B_d} \right] t.
\]

The maximum distance traveled by the debris flow may be determined using following condition:

\[
x = \frac{u_{*} \cos^2 (\theta_{i} + \theta_{d})}{4 g \sin \theta_{i}} \left[1 + \frac{g h_{i} \cos \theta_{i}}{2 u_{*} B_d} \right]^2.
\]

The maximum distance traveled by a debris flow is determined by Equation (11). Since deposited area may be estimated as same as flow area, Equation (11) may be used to determine the length of deposition area.

4. 3. DETERMINATION OF DEBRIS DEPOSITION MAGNITUDE

Equation (11) is used to estimate length of debris flow deposition area in Seymareh. The parameters of right side of Equation (11) should be estimated. The angles of upstream and downstream slopes are estimated as 18° and 3° by using Topographical map of the area, respectively.

The thickness of debris flow in sharp slope of Kabirkuh anticline can be estimated as 350m based on field observation. The velocity of debris flow in sharp slope may be estimated by Equation (4). The velocity coefficient is estimated by using the field data of observed debris flow (Banihabib 1996).

Therefore, the length of deposition area is estimated by Equation (11) as 12165m. The estimated length of deposition area is close to length of deposition in Seymareh area.

5. CONCLUSION

A possible mechanism of occurrence of landslide in Seymareh area is discussed and explained that after starting landslide, it may change to a debris flow. A
One dimensional model is proposed for stoppage of debris flow on the Seymareh syncline. The proposed model is practical and requires a few data to simulate deposition of debris flow and it is proper for landslides which a few data is available. The simulated area of deposition is close to observed one in the field. It may be concluded that the proposed model is proper to determine deposition of landslide in similar case.

REFERENCES

Geodynamics is a subfield of Geophysics which deals with dynamics of the earth. Studies of Geodynamics date back to quite a long time ago whereas Geodynamics is a recent discipline. It's basically an interdisciplinary subject, but it has been the focus of attention of many different science and research centers all over the world. Consequently, Geodynamics has affected all areas related to Geosciences, Environment, Natural Disaster, Mining and Urban Planning. In general, the analysis of the stressful events of the earth is one of the most fundamental discussions needed by the scientists and researchers of Geology, Geophysics, Mining Engineering, Civil Engineering and Geomorphology. That's the premise on the basis of which scientists of geosciences have been able to provide scientific responses for the earth’s internal and external behaviors.

Geodynamics has received a very warm, astonishing welcome by scientists in recent years. Despite the development of the facilities conducive for studying Geodynamics and the related subjects in universities and different research centers all over the world, there are barely sufficient books and journals dealing with Geodynamics. This journal aims to pave the way for dissemination of the research results of the researchers and the scientists of earth sciences in the area of Geodynamics both inside and outside the country.

Gallery

Our beautiful nature, has many wonders. These wonders speak with us as much as several thousand scientific papers. Volcanoes, faults, folds, fractures, landslides, tsunamis and furious waves of the oceans, and all and all of these wonders are part of full of mystery and unknown nature. To diversify of the Webpage it has been trying to be displayed some photos of the beautiful nature which are associated with the subject of the journal in this part of the webpage.
GRIB provides a forum for the publication of original papers in the following general areas:

- Tectonics
- Active Tectonics
- Tectonic Geomorphology
- Earthquake Seismology
- Seismo Tectonics
- Tsunami
- Paleo seismology
- Geomagnetism
- Gravimetry
- Geodesy
- Geothermal
- Landslide
- Land Subsidence
- Volcanology

We appreciate your choosing this journal to publish your article. Articles are original reports whose conclusions represent a substantial advance in understanding of an important problem and have immediate, far-reaching implications.

The Papers Archive

Autumn Issue, 2016
- Seismic Stability Analysis of Soil Slope Using Numerical Model
 Muhammad Rizwan, Muhammad Farooq Iqbal, Muhammad Imran Shahzad [Free Download] [XML]

- Tectonic Investigations in Makran Accretionary Prism through Potential Field Data
 Masood Mahdavi, Behrooz Oskooi, Maysam Abedi [Free Download] [XML]

- Detection of Magnetic Lineaments within Dena City, Kohgiluyeh-And-Boyerahmad Province, Western Iran
 Mohammad Aryamanesh, Peyman Mohseni, Hassan Alizadeh Salo Mohalleh [Free Download] [XML]

- Tracing the Hidden Faults by Using Aeromagnetic Data Interpretation, a Case Study of Kerman Province
 Mohammad Aryamanesh, Sakineh Ghaempanah [Free Download] [XML]

- Probabilistic Seismic Hazard Analysis for a Dam Siyaho in South Khorasan province (Eastern Iran)
 Malihe Baghban, Ebrahim Gholami, Hamid Reza Rostami Barani [Free Download] [XML]

- Introducing Tectonic and Siesmotectonic Patterns of Taft Area
 Hamid Mehrnahad, Abdol Hamid Ansari [Free Download] [XML]

- Fracture patterns in the east Jandaq, margin of Doruneh Fault Zone, Central Iran
 Eiheh Makvandi Nejad, Seyd Saeedreza Esiami, Ali Reza Nadimi, Mortaza Sharifi [Free Download] [XML]

- The Role of Brittle Structures in the Mineralization Evolution in the Southeast Ardestan Copper District (Isfahan Province)
 Maryam Salehi, Zahra Alaminia, Ali Reza Nadimi [Free Download] [XML]

- The Role of Brittle Structures in the Mineralization Evolution in the Southeast Ardestan Copper District (Isfahan Province)
 Ata Eshaghzadeh, Zohreh Moeini Hekmat [Free Download] [XML]

- Assessment of Different Interpolation Methods in 3D Crustal Velocity Using GPS Data in Iran
 Mir-Reza Ghaffari Razin, Behzad Voosoghi [Free Download] [XML]

- Back Propagation Neural Network Method for Estimation of Total Porosity in One of the Iranian South-West Oil-Fields
 Sepideh Yasami Khlabami, Ardshir Poorshaban, Behnam Vaez [Free Download] [XML]

- An Assessment and Zonation of Landslide Susceptibility Using of the Analysis Network Process A Case Study in the Azarshahr Chay Drainage Basin
 Hassan Abedi Gheshlaghi, Khalil Valizadeh Kamran, Tohid Rahimpour [Free Download] [XML]

NOTE
We would like to inform you that the 15th Issue of Geodynamics Research International Bulletin (GRIB) released. You can download your favorite papers free. We're looking forward for your new articles for the next issue.
GRIB Indexed by

GRIB provides a forum for the publication of original papers in the following general areas:

- USA
- Australia
- USA

Copyright © 2013, All Right Reserved by Geodynamics Research International Bulletin (GRIB)

This work is licensed under a CC-BY.