On the complexity of recognizing tenacious graphs

Ali Golshani*, Dara Moazzami,†,‡,§, Saeed Akhondian Amiri*

*University of Tehran, College of Engineering, Faculty of Engineering Science, Department of Algorithms and Computation, Tehran, Iran
†University of California, Los Angeles, (UCLA), Department of Mathematics, U.S.A.

Abstract

We consider the relationship between the minimum degree $\delta(G)$ of a graph and the complexity of recognizing if a graph is T-tenacious. Let $T \geq 1$ be a rational number. We first show that if $\delta(G) \geq \frac{Tn}{T+1}$, then G is T-tenacious. On the other hand, for any fixed $\epsilon > 0$, we show that it is NP-hard to determine if G is T-tenacious, even for the class of graphs with $\delta(G) \geq \left(\frac{T}{T+1} - \epsilon\right)n$.

Keywords: NP-complete problem, tenacity, tenacious, NP-hard.

1. Introduction

We consider only graphs without loops or multiple edges. Our terminology will be standard except as indicated; a good reference for any undefined terms is [2]. We use $V(G)$, $\alpha(G)$, and $\omega(G)$ to denote the vertex set, independence number and number of components in a graph G, respectively. We consider only finite undirected graphs without loops and multiple edges. Let G be a graph. We denote by $V(G)$, $E(G)$ and $|V(G)|$ the set of vertices, the set of edges and the order of G, respectively. The concept of tenacity of a graph G was introduced in [4,5], as a useful measure of the "vulnerability" of G. In [5] Cozzens et al. calculated tenacity of the first and second case of the Harary Graphs but they didn’t show the complete proof of the third case. In [18] we showed a new and complete proof for...

