بررسی نقش پارامترهای مؤثر بر فراوانی حوادث در لوله‌های اسپلری با استفاده از الگوی رگرسیونی ترکیبی

مسعود تابشی(1)

دانشیار و عضو قطع علمی مدیریت و مهندسی زیرساخت‌ها، دانشکده مهندسی عمران، پردیس دانشگاه تهران

آرش آقایی

دانش اموخته کارشناسی ارشد مهندسی عمران- مهندسی آب و هیدرولیک

جلیل ابرشیمی

دانشگاه مهندسی عمران، دانشگاه فردوسی مشهد

(تاریخ دریافت: تاریخ دریافت روایت اصلاح شده: تاریخ تصحیح)

چکیده
شیک‌های توزیع آب شهری مهم قابل توجهی از شرایط‌های اساسی تأمین کننده خدمات آب به مردم را دربر می‌گیرند و به دلیل اینکه در طی زمان‌های اخیر مستندات مهم رایج شده که دانش مردم نسبت به تأمین آب بر عهده سپرده‌های توزیع آب بوده، پرهمز از حوادث
بون شکست لوله‌ها و اجرای دقیق شکست که باعث اسبی‌سازی به سیستم‌های نیروزی توزیع آب شده‌است. این مقاله برای بهبود مدل‌سازی شکست‌های لوله‌ها نخست به بررسی و تحلیل پارامترهای اساسی در شکست‌های می‌پردازد و در ادامه به بررسی انواع ایزو‌لوله‌ای و پارامترهای کلاسیک در تشخیص انواع شکست‌ها که باعث شکست در لوله‌های آب‌ور به ایزومتری توزیع و مدل‌سازی می‌گردد.

کلمات کلیدی: شیک‌های توزیع آب شهری، حوادث لوله‌ها، داده کاپی، پارامترهای شکست، روش‌های پیش‌بینی شکست، رگرسیون چند جمله‌ای تکاملی.

مقدمه
مدیریت بحران، برای برآمده‌بری پارامترهای سیستم توزیع آب شهری به عنوان یکی از شرایط‌های اساسی تأمین کننده خدمات آبی و همچنین گرانترین و

(1) Email: mtabesh@ut.ac.ir
شاخص سیستم آبیاری عبارتند از:
- افزایش فرسودگی لوله که با کاهش زمان باعث اسپیل پذیری لوله‌ها در برابر فشارهای داخلی و خارجی می‌شود.
- حرکت خاک اطراف لوله بر اثر نیروهای وارد بر زمین، لغزش زمین در زمین‌های شیبدار و یا بر اثر تکانه‌های ناشی از زمین لرزه، که نیروی بسیار زیادی بر لوله وارد می‌کند و می‌تواند باعث شکست گردد.
- خوردگی در محیط خاک و آب که برای کلیه‌ای ساختمان‌های فلزی و سیمانی حاصل است.
- فشار آب بیش از فشار امید لوله که آنرا تحت تنش بیش از تنش مجاز خود قرار می‌دهد و در صورت تداوم و یا ناکام‌گری، منجر به شکست لوله می‌گردد.
- صب غیر استاندارد که موجب ایجاد نشت‌های ریز از محل انصل لوله‌ها گردیده که با گذشت زمان شدت می‌گیرد.
- استفاده از محصولات ناماسب برای پوشش و زیربنای لوله‌ها که در صورت عدم کوبیدگی لازم باعث ایجاد نشت‌های در لوله‌ها شده، فشارهای غیرنیازمندی به لوله وارد می‌شود و می‌تواند باعث صدمه بتن بر لوله‌ها شود.
- ضریب و صدمات ناشی از حفره‌ای که بر اثر بی‌احتیاطی به لوله‌ها آسیب می‌رساند.

شکل 1: شیوه‌های باربر و عوامل موثر بر شکست لوله

Figure 1: Effective parameters of pipe failure.
اگرچه شکست لوله را پایان عمر می‌دهد، اما هم‌زمان
نتیجه و عوارض مالی مزدومانشی از حفاظت در
مسیر لوله، خطرات خاص دور لوله، استفاده از
محصول تأمین‌گر برای پوشش و زیرسازی لوله‌ها، نصب گل
و ضرره‌های می‌تواند به‌بیان عمر مقدار لوله را افزایش
دهد. نکته قابل توجه دیگرینه شکست در هر مکان
شراط‌های بخصوصی در و یا مدل پلی‌پیشی شکست قابل

در این مقاله روشهای مطرح در پیش‌بینی شکست
لوله‌ها که توسط محققان مختلف در سال‌های اخیر ارائه
شدند از بین مدل‌های قطعی تحلیل توانایی بر حسب سن،
مدل‌های قطعی خطی بر حسب سن، مدل‌های قطعی چند
متغیره و گروهی نک متفاوتی احتمال (1) بررسی
گردیدند. لازم به ذکر است که برای بررسی شکست لوله‌ها
می‌توان از دو نوع مدل فیزیکی یا آماری استفاده نمود.

اگرچه شکست لوله‌ها یک مثال از مسائلی است.

در این مقاله روشهای مطرح در پیش‌بینی شکست
لوله‌ها که توسط محققان مختلف در سال‌های اخیر ارائه
شدند از بین مدل‌های قطعی تحلیل توانایی بر حسب سن،
مدل‌های قطعی خطی بر حسب سن، مدل‌های قطعی چند
متغیره و گروهی نک متفاوتی احتمال (1) بررسی
گردیدند. لازم به ذکر است که برای بررسی شکست لوله‌ها
می‌توان از دو نوع مدل فیزیکی یا آماری استفاده نمود.

اگرچه شکست لوله‌ها یک مثال از مسائلی است.

در این مقاله روشهای مطرح در پیش‌بینی شکست
لوله‌ها که توسط محققان مختلف در سال‌های اخیر ارائه
شدند از بین مدل‌های قطعی تحلیل توانایی بر حسب سن،
مدل‌های قطعی خطی بر حسب سن، مدل‌های قطعی چند
متغیره و گروهی نک متفاوتی احتمال (1) بررسی
گردیدند. لازم به ذکر است که برای بررسی شکست لوله‌ها
می‌توان از دو نوع مدل فیزیکی یا آماری استفاده نمود.

اگرچه شکست لوله‌ها یک مثال از مسائلی است.

مثبته باقیمانده از طول عمر لوله مرتبط گردید. این مثبته باقیمانده، همان مثبته باقیمانده یک کمکی است (حفره طول و سن لوله) می باشد. طول عمر لوله (T) به صورت زمانی مثبته باقیمانده بیان می شود (X = \left[X_1, X_2, ..., X_m \right], X_n) مثبته باقیمانده کمکی X_n مثبته باقیمانده زمانی می شود.

\[Y = \ln T = X^T \beta + \sigma v \]

(4) در بردار لگاریتم طول عمرهای مشاهداتی X که Y ماتریس از مثبته باقیمانده کمکی، بردار \(\beta \) مقدارهای و مقدار \(\sigma \) می باشد. بردار W بردار سایری از خطاها است که ناشی از توزیع مقدارهای حداکثر فرض شده است.

برای یک لوله با نشان X برای لوله تابع بقایی (S) برای مدل شتاب دهنده ویبل به صورت تابع زمانی زیر است:

\[S(t, \beta, X) = \exp[-\exp(-\frac{\ln t - X^T \beta}{\sigma})] \]

\[= \exp[-t^\beta \exp(-\frac{X^T \beta}{\sigma})] \]

(5) برای پارامتر بردار \(\beta \) و پارامتر مقیاس (بارامترهای مدل X و W) از روش الگوریتم درستنمایی استفاده می شود. ماتریس الحاجز X بوده و با حالت تابع بعوان تابعی از زمان (زمان شکست منشا با احتمال فاقده داده شده) زمان t شکست به صورت زیر به دست می آید:

\[t = (\ln \frac{1}{S}) \exp(\frac{X^T \beta}{\sigma}) \]

(6) از نقاط ضعف روشهای فوق می توان به جامع نبودن (در نظر نگرفتن همه پارامترهای)، مشکل بودن جمع آوری و دقت داده های مورد نیاز و همچنین پیچیدگی آنها اشاره نمود.

از آنجا که در شرایط واقعی بهره برداری که مجموعه ای از عوامل و متغیرهای کمی و کیفی بر اثر می تواند و نزدیک شکست مثبته باقیمانده یک اکتیوین روابط نکردد پارامتری به نیازهای داری دقت بالایی نیست باشد. در جن در سال اخیر تعدادی از محققین تلاش نموده اند که با آزمایش و بشکهای مجموعه ای از پارامترهای موتور کمی پذیر و قابل اندازه نداشته باشد. Shamiर and Howard

\[N(t) = N(t_0) \cdot e^{-\lambda t} \]

(1) که N(t) تعداد شکست در واحده طول در سال، t برای نمایندگی زمان‌بری شده بر حسب سال (از زمان حال) و λ سرل و نت نزدیک شکست به صورت تابعی از زمان شکست سالیانه، دستسایه‌ای برای تحقیق محققان محسوب می شود. Kettler and Goulter

به شکل برای دست داده اوردن نزدیک شکست در مقیاس قطر و سن لوله در لوله‌های جدید و آزمایش استفاده کردن (3):

\[N = K_0 \cdot Age \]

(2) که \(K_0 \) تعداد شکست در سال و پارامتر رگرسیون K0 می باشد. همچنین Meullen می رود. به استفاده از ابتدای زیر پایتین سن لوله در اولین جوانگر بهره گرفته است (4):

\[Age = 65.78 + 0.0285SR - 6.338 pH - 0.049r_t \]

(3) که SR سن لوله در اولین سال شکست (سال) \(p \) مقاومت و وزن خاک اشباع (هل‌مای این جا "برابر pH خاک" و \(r_t \) اشاره کننده رابطه می باشد. نیز نیک مدل ریسک تناسبی Eisenbeis and Le Gat

پارامتری با متغیرهای تصادفی کمکی، با فرض یک توزیع ویبل برای شکست‌های میان بارزهای مطرح کردن (5):

\[\begin{align*}
\end{align*} \]

(4) در این اندازه مدل‌های ویبل این امکان وجود دارد که...
روش تحقیق

مقدمه (EPR)

شیوه معمول بسیاری برای تنظیم‌های مکانی بر داده‌ها (داده‌گیری) جوهر و آنها شیوه‌های عصبی مصنوعی (ANNS) و برنامه‌نویسی زنیک (GP) را روش‌های خاصی در برابر دادن مجموعه داده‌های خام‌تر و ضریبی تری در لوله‌های موجود استفاده می‌کنند و محققان در این مقاله که با تلفیق رگرسیون خطی و سیستم‌های داده (C) از روش‌های Giustolisi & Savic برای تحلیل داده‌ها برای درک سطح واقعی و تحلیل استراتژی رژیم‌های زنیک و آنالیز زنیک (GA) طراحی کرده‌اند، با این تفاوت که در گروه همکاری ارائه شده بر حسب مدلی که داده‌های بزرگ تحلیلی در بررسی زنیک، برنامه‌های کامپیوتری برای حل مسائل داده استفاده می‌شود و به دست آوردن از این استراتژی استفاده از ساختمانی داده و شبکه بارزی به تعیین مدل رگرسیون از قبل نیست، این استراتژی تجاری تابع برنامه‌نویسی زنیک قاعده‌ای (RBGP) یک تجزیه عبارت‌های برآورد شده و همچنین مشکلات سیستمیک را کاهش می‌دهد. این ابزار محدود کردن محدودیت‌های عملکردی که بطور طبیعی در رگرسیون‌های سیستم‌های ارائه شده و به ویژه در مواردی که جواب‌های به‌صورت جواب‌های می‌باشد. یک برنامه‌ای قاعده‌ای که شامل 64 قانون جبری می‌باشد، تمام عبارت‌های حاصله را با استفاده از فرآیند تکمیلی به فرم طراحی شده است. از طرفی می‌توان که این ابزار با توجه به این که در روش‌های EPR (EPR) متغیرهای مستقل قبل تشخیص است که به‌وجود‌آوری بالا در منطقی بین حاصلات متغیرهای قابل اندازه‌گیری نامیده می‌شود. طول و فشار و تعادل اشباعات در برای شکست لوله‌ها منتهی می‌گردد. لازم بود که این ابزار با توجه به این که روش‌های EPR (EPR) و همچنین هیچ‌گونه تحقیقات در مورد کارایی این روش در شرایط خاص کشور ایران انجام نشده است.
هدف: یافتن ماتریس توان‌ها (ES_{m,K}) است که اجراش منجر به بهترین تغییر شکل یافته m مدد منجر به بهترین تغییر شکل یافته m است. نتیجه: یافتن ماتریس توان‌ها (ES_{m,K}) است که منجر به بهترین تغییر شکل یافته m است.

1. تعادل m تغییر شکل یافته مصرف گیاهی کننده
2. تغییر فرم عبارت دنیایی و روش رگرسیون به تغییر شکل یافته m
3. تعادل متغیرهای مستقل

به عنوان مثال:

\[Y_{m+1}(\mathbf{Z}_1) = \sum_{i=0}^{m} \mathbf{a}_i \mathbf{Z}_1^i \]

به یک مثال از چنین ماتریسی می‌تواند به صورت زیر است:

\[\mathbf{ES}_{m,K} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

(11)

چنانچه این ماتریس در معادله (10) یا اینگونه شود:

\[Z_1 = (x_1)^0 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1
Z_2 = (x_1)^0 \begin{bmatrix} x_1^2 \\ x_2^2 \\ x_3^2 \end{bmatrix} = x_1 x_2
Z_3 = (x_1)^0 \begin{bmatrix} x_1^3 \\ x_2^3 \\ x_3^3 \end{bmatrix} = x_1^2 x_3 \]

(12)

پیشینه ماتریس اصلی روش برای کمیته‌های زننیک قاعده‌ای در معادله (8) می‌تواند:

\[\mathbf{Y} = a_0 + a_1 \mathbf{Z}_1 + a_2 \mathbf{Z}_2 + a_3 \mathbf{Z}_3 + a_4 \mathbf{Z}_4 = a_0 + a_1 x_1 + a_2 x_1^2 + a_3 x_1^3 + a_4 x_1^4 \]

(13)

حال: برای هر یک از این می‌تواند منجر به روش‌های (LS) محاسبه شود. این نوعی داشته که هر دوی متغیرهای توان‌های ماتریس \(a_1 \) و \(a_2 \) نتایج منجر به می‌تواند. این در حالی است که هر یک از این می‌تواند منجر به همان مقدار از یک از این می‌تواند منجر به کاربرد در ماتریس EX است که علی‌رغم استفاده از مدل به سمت رگرسیون سیمبولیک تبدیل به می‌تواند. این به داشته که به یافتن پیشینه ماتریس معادله (8) داشته که به عبارت دیگر با یافتن

به عنوان مثال:

\[\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \ldots & x_{1K} \\ x_{21} & x_{22} & \ldots & x_{2K} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{NK} \end{bmatrix} \]

(14)

جمله: این معادله (8) می‌تواند به صورت زیر نوشته شود:

\[z_{f_i} = \begin{bmatrix} (x_1)^{a_1} \mathbf{Z}_1^{a_2} \mathbf{Z}_2^{a_3} \mathbf{Z}_3^{a_4} \mathbf{Z}_4^{a_5} \ldots \mathbf{Z}_K^{a_{2d}} \end{bmatrix} \]

(15)

که در آن \(a_{2d} \) زامین بردار است و حاصل رگرسیون یا کاندید شده می‌باشد.

به عنوان مثال:

\[z_{f_i} = \begin{bmatrix} (x_1)^{a_1} \mathbf{Z}_1^{a_2} \mathbf{Z}_2^{a_3} \mathbf{Z}_3^{a_4} \mathbf{Z}_4^{a_5} \ldots \mathbf{Z}_K^{a_{2d}} \end{bmatrix} \]

(16)

به عنوان مثال:

\[z_{f_i} = \begin{bmatrix} (x_1)^{a_1} \mathbf{Z}_1^{a_2} \mathbf{Z}_2^{a_3} \mathbf{Z}_3^{a_4} \mathbf{Z}_4^{a_5} \ldots \mathbf{Z}_K^{a_{2d}} \end{bmatrix} \]

(17)
مطالعه موردی
محل‌های مطالعه در این پژوهش بخش‌های توزیع هوای شریان مشهد است (شکل ۲). این منطقه واقع در جنوب غربی شهر مشهد تحت عنوان ناحیه‌ی چهار آب و فاضلاب مشهد، دارای ساختاری در حدود ۴۴۱۸ هکتار و شاخص ۶۷۷۸۴۶ متر خط لوله اصلی (قطرهای بین ۳۰ تا ۷۰ میلیمتر) می‌باشد که با استفاده از آن ۹۳۶۷۳۳ متر زیر و اختلاف توبوگرافی قابل توجه در منطقه (نحوه ۲۱۱) از سطح دریا، ساختار ویژه‌ای خاص هستند که جویی منطقه و جوی اتفاق‌های بیماری‌های جوانی منطقه را بیشتر می‌کند. فاصله قبلی این اعمال خاصاً در فصول بهترین‌ها، و گسترش منطقه‌ای بیشتری از ناحیه‌ی چهار جویی منطقه را بیشتر می‌کند. فاصله قبلی این اعمال خاصاً در فصول بهترین‌ها، و گسترش منطقه‌ای بیشتری از ناحیه‌ی چهار جویی منطقه را بیشتر می‌کند.

ثبت آمار حوادث، تعمین و ارزش‌سازی پارامترهای ورودی اصلی در منطقه‌های مطالعه‌ی و پردازش بسته‌های ورودی اطلاعات
ثبت آمار و گزارشات کامل مربوط به هر حادثه از مهم‌ترین بخش‌های مطالعه‌ی شکست لوله‌های هر منطقه به حساب می‌آید. از آنجا که تجزیه و تحلیل شکست لوله‌های شبکه آبیاری بر اساس آمار و اطلاعات شکست لوله‌ها انجام می‌گردد، به همین منظور لازم‌هی انجام تجزیه و تحلیل صحیح و کاربردی، داشتن سیستمی کامل از حوادث شبکه‌های آبیاری، خصوصاً لوله‌ها است. منابع آن در

شکل ۲: نقشه‌ی محدوده‌های مطالعاتی و نقاط اندازه‌گیری فشار

Figure 2: Map of the studied area including zones and pressure measurement points.
توجه حاصل از پیشینی مدل‌های مکانیکی در تجزیه

و تحلیل آن‌ها

با توجه به پارامترهای انتخاب شده، ساختار کل جنگلی زیر با اگلوکی‌زدایی تکاملی، برای تعداد شکست آراز شده است:

\[Br = Ae^u \cdot Ps^p \cdot Lt^l \cdot De^d \cdot Pr^r + a_0 \]

(۱۵) \[Pr \] برای انتخاب خواص در سال آینده را نشان می‌دهد. ترم‌های سیمپلیکس به ترتیب متغیرهای تعداد حواض در سال، انتخاب طول کل، قطر، سن و فشار متوسط، تعداد بالای کلاس، در دیگری از پارامترهای پدیده‌بندی نشان می‌دهند، که در تفیض‌یافته‌هایی مشاهده باشد. در \[گستره \] (۶) (۴) به اضافه صفر نمودار به گشته‌برد. قرارگیری توان‌ها در این محاسبات، درجه‌بندی و تأثیرات مستقیم-مکسیکی هر یک از پارامترهای ورودی را شکست را مطالعه و بررسی کرده می‌ده. علاوه بر این، انتظار صفر به معنای یک توان از تأثیرات یک با چند پارامتر در طول جستجوی تکاملی حذف کننده‌ی این جایگزینی نشان دهنده‌ی معافیتی است که یک متغیر ورودی برای توصیف بیده‌ای فیزیکی مورد نیاز قرار می‌شود.

نتیجه‌گیری بی‌پیش‌گاه شکوه‌ها باشد [۱۳].

موزاد ذکر شده این‌طورهای اصلی تفسیری‌بندی منطقه‌به-پایه چهار محوده‌ی بود تا تأثیرات دیگر پارامترهای محیطی در منطقه که قابل دسترسی و ارزیابی نبودند، به نوعی لحاظ می‌گردد. اندسازگیری‌ها کلاس‌های مختلف قطری لوله‌های منطقه، توسط اسپیگه‌های اندسازگیر، و دستگاه‌های نت‌ما فواصل زمانی ۱۵ دقیقه و (Data Logger) فشار اندسازگیری‌های گیله‌سازی دستی فشار به صورت روشن‌آوری از شبکه انجام شده است. این برداشت‌ها توزیع فشار می‌باشد. در محدوده‌ی را در محیط‌های انتخابی که گسترش آنها در شکوه ۱ مشخص شده است. عدم یک موضوع بود که در یک از این محدوده‌های فشاری شکل، داده می‌کند خطوط لوله، (تنفیذ) نشان دهنده‌ی این موضوع بود که هر نوع بسته‌های مختلف قطری (کلاس قطری ۱۳۰۰، میلی‌متر) و امکان‌های بدتر شده با سنجش (کلاس قطری ۲۳۰۱) فشار بوده‌ی بین محیط‌های تمایل می‌شود. در همین راستا مجموعه‌ای اطلاعات برای لوله‌های اصلی به ۸۰ میلی‌متر (۳۰۰۰ میلی‌متر) و میلی‌متر در کلاس قطری ۶۳۰۰ (۳۶۰۰ میلی‌متر) چهار پردازش شدند. بدین صورت که لوله‌ها در هر یک از این گروه‌های ۸ گروه، دارای جنس مشخص یک پارامتر می‌باشد. با توجه به اینکه طبقه‌بندی لوله‌ها بر اساس دو میلی‌متر قطر و جنس انجام شده، برای اینکه یک‌بار پارامتر فشار به‌نوان در گروهی بینند. ۳ بی‌پیش‌گاه شکل توشک شدن، که نمی‌تواند در لوله‌های فضایی تشکیل نشده تا متغیر فشار مدل (شکل ۳) و مشخصات فشاری ثبت شده که لوله‌ها به فرم کلی رابطه (۱۴) برای یک‌بار طبقه‌بندی محاسبه‌شود.

\[Pr = \frac{\sum_{class} L\cdot Pr_{class}}{L_t} \]

(۱۴) \[Pr \] به مجموع چاپ کلاس قطری در هر لوله مدل معادل \[Lp \] فشار مدل، \[Pr_{class} \] دانسته محدوده و \[L_t \] لوله مدل، برای انتخاب بین می‌شود.
<table>
<thead>
<tr>
<th>Parameters</th>
<th>63 PE</th>
<th>80 AC</th>
<th>90 PE</th>
<th>100 AC</th>
<th>150 AC</th>
<th>200 AC</th>
<th>250 AC</th>
<th>300 AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Length (m)</td>
<td>1027</td>
<td>27169</td>
<td>4748</td>
<td>11716</td>
<td>12504</td>
<td>8668</td>
<td>2384</td>
<td>283</td>
</tr>
<tr>
<td>Age (Year)</td>
<td>11</td>
<td>26</td>
<td>14</td>
<td>24</td>
<td>15</td>
<td>16</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Total Supplied Properties</td>
<td>22</td>
<td>998</td>
<td>137</td>
<td>92</td>
<td>105</td>
<td>81</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>Mean Pressure (atm)</td>
<td>4</td>
<td>4.12</td>
<td>4.19</td>
<td>4.28</td>
<td>4.14</td>
<td>3.88</td>
<td>3.89</td>
<td>4.29</td>
</tr>
<tr>
<td>No. of Breaks</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>13</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total Length (m)</td>
<td>22140</td>
<td>36263</td>
<td>20087</td>
<td>26651</td>
<td>22524</td>
<td>17101</td>
<td>3050</td>
<td>881</td>
</tr>
<tr>
<td>Age (Year)</td>
<td>11</td>
<td>23</td>
<td>15</td>
<td>23</td>
<td>12</td>
<td>13</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Total Supplied Properties</td>
<td>476</td>
<td>1332</td>
<td>578</td>
<td>150</td>
<td>157</td>
<td>108</td>
<td>23</td>
<td>5</td>
</tr>
<tr>
<td>Mean Pressure (atm)</td>
<td>4</td>
<td>4.12</td>
<td>4.19</td>
<td>4.28</td>
<td>4.14</td>
<td>3.88</td>
<td>3.89</td>
<td>4.29</td>
</tr>
<tr>
<td>No. of Breaks</td>
<td>48</td>
<td>80</td>
<td>26</td>
<td>30</td>
<td>14</td>
<td>15</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Total Length (m)</td>
<td>5228</td>
<td>26586</td>
<td>8366</td>
<td>34715</td>
<td>25235</td>
<td>4747</td>
<td>1892</td>
<td>1214</td>
</tr>
<tr>
<td>Age (Year)</td>
<td>10</td>
<td>22</td>
<td>11</td>
<td>20</td>
<td>13</td>
<td>13</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Total Supplied Properties</td>
<td>112</td>
<td>976</td>
<td>241</td>
<td>93</td>
<td>147</td>
<td>35</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Mean Pressure (atm)</td>
<td>4</td>
<td>4.12</td>
<td>4.19</td>
<td>4.28</td>
<td>4.14</td>
<td>3.88</td>
<td>3.89</td>
<td>4.29</td>
</tr>
<tr>
<td>No. of Breaks</td>
<td>12</td>
<td>59</td>
<td>11</td>
<td>40</td>
<td>14</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total Length (m)</td>
<td>1177</td>
<td>4619</td>
<td>8323</td>
<td>24230</td>
<td>9896</td>
<td>6209</td>
<td>930</td>
<td>-</td>
</tr>
<tr>
<td>Age (Year)</td>
<td>8</td>
<td>16</td>
<td>9</td>
<td>14</td>
<td>10</td>
<td>11</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>Total Supplied Properties</td>
<td>25</td>
<td>179</td>
<td>245</td>
<td>73</td>
<td>73</td>
<td>47</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Mean Pressure (atm)</td>
<td>4</td>
<td>4.12</td>
<td>4.19</td>
<td>4.28</td>
<td>4.14</td>
<td>3.88</td>
<td>3.89</td>
<td>-</td>
</tr>
<tr>
<td>No. of Breaks</td>
<td>3</td>
<td>11</td>
<td>11</td>
<td>28</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

\[D_e = \text{مجموع طول كلاس قطری در هر محدوده} = \text{Pr}_p + \text{فسفار كلاس قطری در هر محدوده} = D_e \]

Figure 3: Schematic shape of a pipe with different diameter classes.

شکل 3: طرح شماتیک لولهی معادل شده‌ی هر کلاس قطری
با این ساختار می‌توان مقایسه‌های میان مدل شکست لوله‌ها در زون‌های مختلف را با مقایسه‌های ساده بین نمونه ورودی‌ها انجام داد. در ساختار معادلی (15) از یک مقدار بالای (α) برای رشد به عدد نهایی شکست استفاده شده است که این مقدار برای تغییرات درگیر فاکتورها به جز ورودی‌های انگابه‌کننده به منظور دریافت شکست، فرضیه‌ای است. با توجه به این موضوع که برای هر زون، بسته به تغییر در تعداد نمونه و ضرایب توالی پارامترها بین از یک مدل شکست اثرات می‌شود، برای پذیرش مدل‌های پیش‌بینی شکست (از بین 240 مدل تولید شده)، معیار ماکزیمم و مینیمم (CoD) میانگین خطای در کنار شاخه احتمالی ضریب تعیین به کار گرفته می‌شود تا کارایی هر مدل آزمایشگر را به عنوان معیار احتمالی پارامترهای مدل به‌صورت رابطه زیر محاسبه می‌شود:

$$CoD = 1 - \frac{1}{N} \frac{\sum_{i=1}^{N} (Br_{exp} - Br_{rec})^2}{\sum_{i=1}^{N} (Br_{rec} - Br_{rec})^2}$$

(16)

که در آن N تعداد پردارش داده‌ها است که برای هر EPR فرمول بسته به تعداد پارامترهای انتی‌مدلین شامل برای هر نهایی بین و در بررسی‌ها انجام می‌شود تا به همگراپی نهایی برسعی و در جراحات

Figure 4: Expected vs. recorded breaks in zone 3.

شکل 4: نمایش پیش‌بینی شکست در سطحی از جمله‌ای تکامل در مقایسه شکست‌های نیستت شده در زون 3.
تجزیه و تحلیل مدل‌های پیش‌بینی شکست
برای هر چهار زون مطالعه‌ای در منطقه، براساس ضوابط پذیرش مدل‌ها که قبل آن اشاره شد، 24 فرمول پذیرش شده است که در میان آن‌ها چهار فرمول چندجمله‌ای یک ترمی، بازده چندجمله‌ای دارای دو ترم و یک چندجمله‌ای سه ترمی انتخاب گردیده است. منظور از ترم، تعداد رشته‌هایی است که ساختار یک مدل را CoD می‌سازند. در میان مدل‌های پذیرش شده، شاخص CoD برای هر یک از مدل‌های شکست یک تا پنج متغیره به نتایج زون‌های انتخابی

![جدول ۵: میانگین ضریب CoD برای تمامی مدل‌های شکست یک تا پنج متغیره به نتایج زون‌های انتخابی](image)

![جدول ۶: میانگین ضریب CoD برای مدل‌های مشخص شکست یک تا پنج متغیره در چهار محدوده](image)
جدول ٢: فرمول‌های انتخابی بیش بینی شکست در زون‌های مطالعاتی ناحیه ٤ شهر مشهد

<table>
<thead>
<tr>
<th>Zone</th>
<th>Burst Predicting Formulas in Pipes</th>
<th>CoD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Br = \text{round}(6.385 \times 10^{-6} \cdot De^3 \cdot Lt^2 + 2.3024))</td>
<td>0.992</td>
</tr>
<tr>
<td>2</td>
<td>(Br = \text{round}(36.221 \times 10^{-5} \cdot De^{-2} \cdot Lt^2 + 5.15))</td>
<td>0.980</td>
</tr>
<tr>
<td>3</td>
<td>(Br = \text{round}(0.5578 \cdot De^{-1} \cdot Ae^2 \cdot Pr^2))</td>
<td>0.978</td>
</tr>
<tr>
<td>4</td>
<td>(Br = \text{round}(0.097846 \cdot De^{-1} \cdot Lt + 0.0012545 \cdot Ae^2 \cdot Pr^2))</td>
<td>0.987</td>
</tr>
</tbody>
</table>

\(Br = Ae^\alpha \cdot Ps^\beta \cdot Lt^\gamma \cdot De^\delta \cdot Pr^\mu + a_0 \)

\(\alpha \)
\(\beta \)
\(\gamma \)
\(\delta \)
\(\mu \)

\(\alpha \)
\(\beta \)
\(\gamma \)
\(\delta \)
\(\mu \)

\(\alpha \)
\(\beta \)
\(\gamma \)
\(\delta \)
\(\mu \)

شکل ٧: توان انتخابی در مدل‌های شکست لوله‌های آبرسانی ناحیه چهار شهر مشهد با متغیر فشار

چهار و پنج متغیره برای اعضای از محدوده‌ها توسط مدل تولید نشده است که نشان از عدم تأثیر عضای متغیره در مدل شکست لوله‌ها این محدوده‌ها می‌باشد. این نتیجه به خوبی در شکل‌های (٧) و (٨) که پراکندگی توان متغیرهای انتخابی را نشان داده است نیز مشخص می‌باشد.

مدل‌های پذیرش شده، نشان می‌دهند متغیر س لوله \(k_e \) که در نمی‌انداز محدوده‌ها دارای مقدار منطبق با حداقل صفر (خشن) برای \(\alpha \) است، در حالی‌که برای TOM از محدوده‌ها (De) که در ١٠٠٪ مجدد داشته‌ها ظاهر گشته فقط مقدار متغیر مورد برای هر توان تأثیر می‌شود. این نتایج در رابطه با میدان‌ها مطالعاتی قبلی را تایید می‌کند که نخستین بار بارآماد فشار به صورت متغیر ورودی در مدل‌های ورودی گشته که در ٥٠٪ مجدد تأثیر خود را به داشته ایست. این تأثیر به صورت مقدار منطبق بر اشاره است. در هر محدوده مطالعاتی به و جهار که فشار در با توجه به مطالب فوقالذکر، مؤثرترین مدل‌های شکست یک تابع تایید برابری که ضریب برابری آن‌ها در قبل مورد تایید قرار گرفته بود. به نتیجه اهمیت آنها در هر یک از محدوده‌های چهارگانه، آزمایش شده و میانگین ضرب \(CoD \) در تمام چهار محدوده در شکل (٣) نشان داده شده است. بدین‌طور که این صنف در زیر یک در شکل (٥) به طریق فرآیند تعداد متغیرهای در هر رشته، نشان داده شده است. روند تغییرات ضریب با در هر یک از رشته‌های مدل شکست، تأثیر متغیرهای انتخابی در مدل‌های شکست را نشان می‌دهد. برجوش‌های از میان کل مدل‌های پذیرفته شده یک طبق منگیره برای چهار محدوده مطالعاتی در جدول (٣) ارائه شده است. همانطور که از شکل (٥) بر می‌آید فرمول‌های شکست تعداد شکستها با رشد سن لوله افزایش و با افزایش قطر لوله کاهش می‌یابد. در دو محدوده مطالعاتی یک و دو که مجموع طول لوله‌های سیستم بیشتر است، تأثیر بارآماد سندی دیتاس ارائه علاوه بر این باعث اشکال کردن برای
شکل ۸: توان انتخابی در مدل‌های شکست لوله‌های ایرانی ناحیه جهار شهر مشهد با جذب متغیر فشار

شکله‌ای آن‌ها محسوس تر بوده پارامتر فشار (Pr) در ۸۰/۰ مدل‌ها ظاهر گشته است. همچنین در مدل‌های پذیرفته شده، پارامتر Pr حذف گردیده و نشان دهنده این است که تعداد کل انتفاع‌ها از نظر آماری، کمتر از دیگر ورودی‌ها تأثیر گذاشته. درصد پراکندگی توان هر یک از متغیرها در مدل‌های پذیرفته شده در منطقه در شکل (۲) آمده است.

چنانچه پارامتر فشار به صورت یک متغیر مستقل در مدل‌هایی شکست لوله‌ها وارد نگردید. تأثیرات غیر مستقیم آن بر روی تکنیک‌های پارامترها قابل ارزیابی است. با حذف فشار و انجام مجدد بررسی‌های مدل‌سازی، در محدوده‌های با فشار متوسط بیشتر، افزایش تأثیر سن لوله‌ها در مقابل کاهش تأثیر قطر آنها ملاحظه گردید. به طوریکه در محدوده‌های با فشار متوسط کمتر، این تأثیرات کاملاً معکوس بود. همچنین تأثیر قبل ملاحظه‌ها در تأثیر دیگر پارامترهایی مجموع طول و تعداد انتفاع‌ها لوله بر مدل‌های شکست لوله‌ها مشاهده گردید. شکل (۸) پراکندگی توان این تأثیرات کاملاً مشاهده شده است.

تقریب و تشریح

پیشینه و سیاست‌های مسئول منجر به حداکثر و حاویت اتفاقات ناحیه ۴ شرکت آب و فاضلاب شهر مشهد، در زمینه تهیه اطلاعات مورد نیاز این تحقیق قدردانی می‌گردد.

جمع‌بندی و نتیجه‌گیری

در این مقاله، با پیان انواع روش‌های پیش‌بینی شکست در شیب‌های توزیع آب شهری، به نقش و بررسی آن‌ها
Marius

واژه های انگلیسی به ترتیب استفاده در متن

1- Evolutionary Polynomial Regression 2- Log-Likelihood
3- Data-Driven Modeling 4- Genetic Programming
5- Genetic Algorithm 6- Rule-Based Genetic Programming
7- Cost Function 8- Coefficient of Determination