Delineation of alteration zones based on Sequential Gaussian Simulation and concentration–volume fractal modeling in the hypogene zone of Sungun copper deposit, NW Iran

Fatemeh Soltani a,⁎, Peyman Afzal a,⁎⁎, Omid Asghari c

a Department of Mining Engineering, Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
b Camborne School of Mines, University of Exeter, Penryn, UK
c Simulation & Data Processing Laboratory, Department of Mining Engineering, University of Tehran, Tehran, Iran

A R T I C L E I N F O

Article history:
Received 23 July 2013
Accepted 9 February 2014
Available online xxxx

Keywords:
Sequential Gaussian Simulation (SGS)
Concentration–volume (C–V) fractal model
Alteration zones
Sungun Cu porphyry deposit
Geostatistics

A B S T R A C T

The main aim of this study is the identification of potassic, phyllic and propylitic alteration zones in the hypogene zone of the Sungun Cu porphyry deposit (NW Iran) based on drillcore data, utilizing sequential geostatistical simulation (SGS) and concentration–volume (C–V) fractal model. C–V log–log plots were generated for the results obtained by 10 realizations and the average of those realizations (E-type) which was used for the determination of Cu threshold values for the alteration zones. Based on correlation between geological models and the results derived via SGS and C–V fractal modeling by log ratio matrix, the potassic alteration zone with Cu values < 0.005% as a result of simulation numbers (sims) 1, 5 and 9 with overall accuracy (OA) of 0.94. Additionally, the phyllic alteration contents of Cu values between 0.25% and 0.63% with OA of 0.70 are delineated by E-type. Moreover, a correlation between C–V fractal modeling of realizations and the potassic alteration zone derived via the geological model reveals that this alteration zone has Cu values higher than 2.23% (sims 1, 5 and 9) with OA of 0.816. The results of this research reveal that phyllic alteration due to having many existing geological samples with the grades close to the average ore grade (0.44%) of the Sungun deposit has a proper overlap with E-type; however, potassic and propylitic alterations containing the highest and lowest ore grades have a strong overlap with sims 1, 5 and 9.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Different alteration patterns and their spatial variability have vital roles in grade distribution within an ore deposit. In the other hand, the grade variability would be affected by rock type and alteration changes. For better understanding of these grade dependent processes, it is very important to predict the spatial distribution of the grade within the desired ore deposit (Asghari and Hezarkhani, 2008). Conventional methods to distinguish alteration zones in hydrothermal deposits are based on mineralogical, petrographical and geochemical investigations including assemblages of minerals and ore mineral recognition utilizing thin sections, X-Ray Diffraction (XRD), Electron Probe Micro Analyzer (EPMA), Scanning Electron Microscopy (SEM) and Portable Infrared Mineral Analyzer (PIMA: e.g., Berger et al., 2008; Chouinard et al., 2005; Cox and Singer, 1986; Hedenquist et al., 2000; Hoefs, 2009; Lowell and Guibert, 1970; Pirajno, 2009; Richards, 1995; Sillitoe, 1997).

Geostatistics has been used for spatial variability characterization and prediction of grade over the last three decades. Ordinary kriging (OK) is the most useful geostatistical estimation technique which is also called the “best linear unbiased estimator” (Isaaks and Srivastava, 1989; Journel and Huijbregts, 1978). The most important negative characteristics of moving average estimators such as kriging are smoothing effect and reducing the range of variation of the variables. Geostatistical simulation is widely used to overcome this problem and avoiding the smoothing effect of such estimation methods (Chilès and Delfiner, 2012).

Geostatistical stochastic simulations have the ability not only to estimate the spatial distribution of the regionalized variable but also to assess both local uncertainty and spatial uncertainty about the estimates (Deutsch and Journel, 1998; Goovaerts, 1997). Conditional stochastic simulation is designed initially to overcome the smoothing effect of kriging estimator especially when mapping sharp or extreme spatial discontinuities are to be found (Deutsch and Journel, 1998; Leuangthong et al., 2004).

The simulation algorithms take into account both the spatial variation of actual data at sampled locations and on the other hand, the variation of estimates at unsampled locations (Delbari et al., 2009). It means that stochastic simulation reproduces the sample statistics (histogram and semi-variogram model) and honors the sample data at their original locations. Therefore a stochastic simulation map represents the spatial distribution of a more realistic attribute than a kriged map (Asghari and Madani Esfahani, 2013; Rezaee et al., 2013).
Please cite this article as: Soltani, F., et al., Delineation of alteration zones based on Sequential Gaussian Simulation and concentration-volume fractal modeling in the hypogene..., J. Geochem. Explor. (2014), http://dx.doi.org/10.1016/j.gexplo.2014.02.007
Many stochastic simulation algorithms have been proposed and among them Sequential Gaussian Simulation (SGS) is widely used because it is fast and straightforward in reconstructing conditional cumulative distribution function (CCDF: Chen et al., 2013; Geboy et al., 2013; Maleki Tehrani et al., 2012; Mancuk and Deutsch, 2012a, 2012b).

In most interpolation algorithms such as OK, the aim is to provide the “best” local estimation of the variables without consideration of spatial conditions. The whole point of geostatistical simulation is to reproduce the variance of the input data, both in a univariate (histogram) and spatial (variogram) sense. Consequently, simulations provide an appropriate platform to study any problem relating to variability (Goovaerts, 1996).

Kriging is used for the local set of data and conditional statistics as an interpolation method which gives a simple numerical method in the sense of local precision. Simulation provides several alternatives but equally probable models all of which are the “best” reflection of the reality in a certain global sense. The differences between the realizations offer an opportunity for measuring the spatial uncertainty (Goovaerts, 1996; Ravenscroft, 1994).

The geostatistical simulation methods employ simple kriging at a voxel to estimate the posterior mean and variance, with random sampling of the posterior distribution to create a realization at the corresponding voxels (Dimitrakopoulos and Luo, 2004; Ravenscroft, 1994).

Fractal/multifractal modeling, established originally by Mandelbrot (1983), has been widely applied for separating the different geological/mineralization processes. Variation of geochemical and mineralization processes can be explained based on differences in fractal dimensions obtained from analysis of relevant geochemical data (Afzal et al., 2011, 2012; Cheng et al., 1994; Goncalves et al., 2001; Sim et al., 1999; Wang et al., 2011; Yasrebi et al., 2013). Models of fractal/multifractal analysis also serve to reveal the relationships of geographical, geophysical, geochemical and mineralogical settings with spatial information derived via analysis of mineral deposit data (Afzal et al., 2011; Carranza, 2009; Daneshvar Saein et al., 2012; Goncalves et al., 2001; Gumiel et al., 2010). However, good knowledge of geological environmental controls on mineralization (e.g., alteration zones) is important in the identification and classification of geological populations based on fractal/multifractal models (Afzal et al., 2011, 2013; Arias et al., 2012; Carranza and Sadeghi, 2010; Cheng, 1999; Delavar et al., 2012; Li et al., 2003; Sadeghi et al., 2012; Sim et al., 1999; Yasrebi et al., 2013; Zuo, 2011; Zuo et al., 2009).

Fractal dimensions in geological and mineralization processes correspond to variations in physical characteristics such as rock type, fluid phase, alteration zones, vein density or orientation, and structural feature or dominant mineralogy (i.e., Afzal et al., 2011; Sim et al., 1999). In recent years, fractal/multifractal modeling has been utilized for delineation of mineralized zones in different types of ore deposits such as number–size (N–S: Mandelbrot, 1983), size–grade (S–G: Agterberg, 1995), concentration–volume (C–V: Afzal et al., 2011), power spectrum–volume (P–V: Afzal et al., 2012) and concentration–number (C–N: Hassanpour and Afzal, 2013).

Different geochemical processes can be defined based on variations in fractal dimensions derived via analysis of relevant geochemical data. Fractal dimensions in geological and geochemical processes correspond to differences in physical characteristics such as lithology, vein density or orientation, fluid phase, alteration phenomena, and structural feature or dominant mineralogy (Afzal et al., 2011; Sim et al., 1999; Yasrebi et al., 2013). Conventional models based upon geological studies and analysis of cores from boreholes with the purpose of delineating the mineralized zones do not have a high efficiency in the ore deposits especially in the porphyry deposits. The fractal/multifractal modeling has a distinctive power to distinguish the natural populations like different ore grades within a deposit (Yasrebi et al., 2013).

In this paper, Sequential Gaussian Simulation (SGS) and C–V fractal modeling were utilized for delineating various alteration zones (potassic, phyllic and propylitic) based on Cu values in the hypogene zone of Sungun Cu porphyry deposit, NW Iran.

2. Geological setting

Main porphyry copper mineralization in Iran occurs in the Cenozoic Sahand–Bazman orogenic belt (Fig. 1). The Sahand–Bazman belt was formed by subduction of the Arabian plate beneath central Iran during the Alpine orogeny. Subduction caused extensive alkaline and calc-alkaline volcanic and plutonic igneous activities, including intrusion of a porphyritic calc-alkaline stock at Sungun during Miocene times (Berberian and King, 1981; Dargahi et al., 2010; Mehrpartou, 1993).

The Sungun porphyry copper deposit (PCD) is located about 100 km NE of Tabriz, NW Iran (Fig. 1). The Sungun deposit is hosted by diorite/granodiorite to monzonite/quartz–monzonite stocks (Hezarkhani, 2006; Mehrpartou, 1993). The porphyry stock II (which is studied in this research) hosts the Sungun PCD and varies in composition from quartz monzonite through granodiorite to granite. Four series of dikes injected lately varying in composition from quartz monzonidiorite to granodiorite intersect the Sungun stocks (Calagari, 2004).

The NW–SSE trending dikes dip steeply to the west and have thickness from a few centimeters to several tens of meters (Fig. 1: Asghari et al., 2009; Rashidinejad et al., 2008).

3. Alteration and mineralization

Different alterations and related mineralization in the Sungun PCD have been studied by geological investigations (Asghari et al., 2009; Hezarkhani, 2006; Mehrpartou, 1993). Hydrothermal alteration and mineralization at Sungun are centered on the porphyry stock II. An early hydrothermal alteration was dominantly potassic and propylitic, and it was followed later by phyllic and argillic alterations (Asghari et al., 2009; Hezarkhani and Williams-Jones, 1998).

3.1. Potassic alteration

The earliest alteration is represented by potassic mineral assemblages developed pervasively and as halos around veins in the deep and central parts of the Sungun stock. Potassic alteration is characterized by the occurrence of K-feldspar and displays a close spatial association with copper and molybdenum mineralization (Hezarkhani et al., 1999; Mehrpartou, 1993).

3.2. Phyllic alteration

Phyllic alteration is characterized by the replacement of almost all rock-forming silicates by sericite and quartz and overprints the earlier formed potassic. Pyrite forms up to 5 vol.% of the rock and occurs in veins and disseminations. Quartz veins are surrounded by weak sericitic halos. Vein-hosted pyrite is partially replaced by chalcopyrite. Silification was synchronous with phyllic alteration and variably affected much of the stock and most dikes (Asghari et al., 2009; Hezarkhani, 2006).

Fig. 1. Geological map of the Sungun PCD and its location in the Sahand–Bazman orogenic belt which shows the field relationships among the various subtypes of Sungun intrusive rocks and the outline of the mineralized zone (modified from Asghari et al., 2009 and Hezarkhani, 2006), dyke series DK1a and DK1b (upper right) and drilling grid of the area (the red rectangle having the highest density of drill holes was selected for this study). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Please cite this article as: Soltani, F., et al., Delineation of alteration zones based on Sequential Gaussian Simulation and concentration–volume fractal modeling in the hypogene..., J. Geochem. Explor. (2014), http://dx.doi.org/10.1016/j.gexplo.2014.02.007
3.3. Propylitic

Propylitic alteration is characterized by the chloritization of primary and secondary biotite, amphibole and groundmass materials in rocks peripheral to the central potassic zone. Minor minerals associated with propylitic alteration are albite, calcite, sericite, anhydrite (gypsum), and pyrite. The propylitic type of alteration is restricted to peripheral porphyry stocks and some dike series (Calagari, 2004).

3.4. Argillic

Within some areas, 80 m of the erosional surface of the entire rock has been altered to an assemblage of clay minerals, hematite and quartz but feldspar is altered to clay locally to a depth of about 400 m. A shallow level of alteration is interpreted to represent a supergene blanket over the deposit and the deeper clay alteration of feldspar may represent an advanced argillic stage of the hypogene alteration. Most samples taken from argillic alteration averaging 0.09% Cu content demonstrate that this barren zone could be assumed as waste from an exploitation point of view (Asghari et al., 2009).

3.5. Supergene enrichment

Two distinct supergene enrichment mineralized zones are recognized at Sungun (1) oxidized and leached zone and (2) supergene sulphide zone. The thickness of the supergene zone is non-uniform and it could be seen that the eastern part contains higher thickness and Cu grade compared to the western part. This can be structurally controlled by numerous NEE and NWW-trending faults. Meteoritic water leaches the copper from the oxide zone and while passing the faults beneath the water table, precipitates the copper in the form of native copper and secondary sulphides. Supergene enrichment zone determined by geological studies indicates the presence of chalcocite, chrysocolla, azurite, malachite and digenite (Asghari et al., 2009; Parsolang report, 2006).

3.6. Hypogene zone

Hypogene copper mineralization was introduced during potassic alteration and to a more extent during phyllic alteration (Asghari and Hezarkhani, 2008). During potassic alteration, the copper mineralization was deposited as chalcopyrite and minor bornite; later hypogene copper mineralization deposited mainly chalcopyrite. Alteration of feldspars and biotite (from potassically altered rocks) was accompanied by an increase in sulphide content outward from the central part of the stock. The maximum Cu grade is associated with biotite, orthoclase, and sericite (potassic zone) while the pyrite content is highest (3–10 vol.% of the rock) in the marginal quartz–sericite (phyllic) zone (Hezarkhani and Williams-Jones, 1998).

4. Methodology

4.1. Sequential Gaussian Simulation (SGS)

Sequential simulation is a stochastic modeling algorithm that obtains multiple realizations based on the same input data (Geboy et al., 2013; Journel, 1993). This data could be either continuous or categorical. Regarding the data type, sequential indicator simulation, Sequential Gaussian Simulation (SGS: Isaaks and Srivastava, 1989; Qu et al., 2013) or direct sequential simulation will be used.

The most straightforward algorithm for generating realizations of a multivariate Gaussian field is provided by the sequential principle (Leuangthong et al., 2004; Manchuk and Deutsch, 2012a, 2012b). SGS demands standard Gaussian data with zero mean and unit variance, so for SGS, data are transformed to be Gaussian through a quantile

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic statistics of Cu raw data (n = 19,605) and output grid for different realizations, E-type and ordinary kriging.</td>
</tr>
<tr>
<td>Range (%)</td>
</tr>
<tr>
<td>Raw data</td>
</tr>
<tr>
<td>sim 1</td>
</tr>
<tr>
<td>sim 2</td>
</tr>
<tr>
<td>sim 3</td>
</tr>
<tr>
<td>sim 4</td>
</tr>
<tr>
<td>sim 5</td>
</tr>
<tr>
<td>sim 6</td>
</tr>
<tr>
<td>sim 7</td>
</tr>
<tr>
<td>sim 8</td>
</tr>
<tr>
<td>sim 9</td>
</tr>
<tr>
<td>sim 10</td>
</tr>
<tr>
<td>E-type</td>
</tr>
<tr>
<td>Kriged</td>
</tr>
</tbody>
</table>

Fig. 2. Histogram of the raw (a) and normal score transformed (b) data.
transformation (Chilès and Delfiner, 2012). Each variable is simulated sequentially according to its normal CCDF through a simple kriging estimation system. The conditioning data consist of all original data and all previously simulated values found within a neighborhood of the location being simulated (Leuangthong et al., 2004; Manchuk and Deutsch, 2012a, 2012b).

The conditional simulation of a continuous variable \(z(u) \) in a Gaussian space proceeds as follows (Zanon and Leuangthong, 2004):

1. Define a stationary domain.
2. Draw the univariate Cumulative Distribution Function (CDF) of the domain after having done the declustering if the data are not in a regular grid.
3. Transform the \(z \) data into \(y \) (a standard normal) using the CDF \(F_z(z) \).
4. Draw a random path which meets all nodes of the grid in each realization. At each node (\(u \)):
 a. Define a search ellipsoid to find adjacent data and previously simulated values,
 b. Use SK with the normal score variogram model to determine the mean and variance of the CCDF of the RF \(Y(u) \) at location \(u \),
 c. Perform Monte Carlo simulation to obtain a single value from the distribution (Zanon and Leuangthong, 2004).
5. Add the simulated value to the data set
6. Proceed to the next node, and loop until all nodes are simulated
7. Backtransform the simulated normal values into the original unit (Deutsch and Journel, 1998).

Regarding a transformation to Gaussian and then backtransform to an original unit, statistical fluctuations are inherent in simulation but the fluctuations should be reasonable and unbiased in the mean and variance (Zanon and Leuangthong, 2004).

The following checks should be performed after having all nodes simulated: reproduction of (1) the data values at data locations, (2) the original histogram, (3) the original summary statistics, and (4) the input covariance model (Zanon and Leuangthong, 2004).

4.2. Concentration–volume fractal model

The C–V fractal model, which was proposed by Afzal et al. (2011) for delineation of mineralized zones and barren host rocks in porphyry-Cu deposits, can be expressed as:

\[
V(p \leq \nu) \propto p^{-a_1}; \quad V(p \geq \nu) \propto p^{-a_2}
\]

where \(V(p \leq \nu) \) and \(V(p \geq \nu) \) represent the two volumes with concentration values less than or equal to and greater than or equal to the contour value \(p \); \(\nu \) represents the threshold value of a geological zone (or volume); and \(a_1 \) and \(a_2 \) are the characteristic exponents. Threshold values in this model show boundaries between various mineralized (or alteration) zones of various mineral deposits. In this paper, \(V(p \leq \nu) \) and \(V(p \geq \nu) \) which are the volumes enclosed by a contour level \(p \) in a 3D model, the borehole data of ore concentrations were calculated by using SGS method.

5. Simulation of copper grade based on SGS

5.1. Descriptive statistics and spatial autocorrelation analysis

Descriptive statistics and the histogram of copper grades from 19,605 samples in the hypogene zone of the Sungun PCD are presented in Table 1 and Fig. 2, respectively which show the distribution of Cu data is not normal with the Cu mean value of 0.445%.

The Cu data have been transformed by using a normal score transformation and the statistics of transformed data (i.e. the mean value close to 0 and the variance of about 1) check the correctness of the transformation. The display of the histogram of new Gaussian variable also checks that the distribution is symmetric with minimum and maximum values of \(-3.88 \) and \(3.88 \) respectively (Fig. 2). Geostatistical studies and visualizations were done with SGeMS and Datamine studios. An experimental semi-variogram and a spherical model fitted to the raw and normal transformed data are presented in Fig. 3.
Anisotropy has also been investigated and modeled based on calculating the experimental semi-variograms of Cu and normalized value among horizontal directions with 30° angular increments and ±15° angular tolerance and one vertical direction. The results show a mild anisotropy in the azimuth of 150° (major axis) for normal values, as depicted in Fig. 4.

The isotropic semi-variogram of raw data follows a spherical structure with a nugget effect of 0.038 (%)² which reaches to a sill of 0.22 (%)² at a range of 64.7 m, as shown in Fig. 3-a. The experimental semi-variogram of the normal scores (Fig. 3-b) follows again a spherical model with a nugget effect of 0.138 (%)² with a range of spatial correlation about 71 m, which is similar to the one obtained for the raw data. That means the intrinsic spatial character of the Cu data does not vary with the normal transformation of data. The sill of the semi-variogram for the transformed data reaches to unity, as it should be to fulfill the second-order stationary assumption.

5.2. Conditional simulation

Based on SGS modeling, ten realizations of Cu spatial distributions are generated on a 25 × 25 × 25 (m³) grid within the hypogene zone. Simulation is performed using the simple kriging estimator, and the semi-variogram model of Cu normal scores. Horizontal plan of four randomly selected realizations consisting of simulation numbers (sims 2, 5, 7 and 10) is displayed in Fig. 5. Each realization represents a realistic spatial distribution of Cu without a smoothing effect.

Four randomly selected realizations are checked to examine the sample statistics reproduction. The CDFs of all realizations of Cu distribution and also E-type and kriged map are displayed, as depicted in Fig. 6. Comparing these frequencies with the sample cumulative frequency (solid red line in the same shape) reveals that the realizations reproduce the sample histogram, reasonably well (Fig. 6). The reproduction of the Cu raw data semi-variogram model by selected realizations is also proper.

Some discrepancies between different realizations and sample models called ergodic fluctuations are acceptable which may have different reasons such as the algorithm used for the simulation, the semi-variogram model parameters and the amount of conditioning data to be utilized for the simulation (Goovaerts, 1997).

In the case of SGS algorithm, the histogram and semi-variogram models reproduced over a number of realizations should be, on average, equal to the sample statistics (Figs. 6 and 7: Emery and Peláez, 2012).
Fig. 6. Experimental semi-variogram of the 10 realizations compared to the sample data (green line). According to voxel size of $25 \times 25 \times 25$ m the experimental semi-variogram of realizations could not find pairs for increments below 25 m. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Log–log plots of different realizations of SGS and E-type.
Each realization well preserves the range of variation of the measured Cu data compared to OK map which is illustrated in Table 2. This reveals the smoothing effect, a typical property of kriging. This is also evident from the kriging variance, which is much smaller than the actual variance. OK does not reflect the true variability especially for high values (Fig. 6), and hence is not appropriate for the underlying outlook to this study. Summary statistics of E-type estimate map are however similar to those for kriged map. On the other hand, results obtained by E-type have good correlations with estimation values derived via ordinary kriging.

6. C–V fractal modeling

Based on the results obtained from SGS, volumes corresponding to different Cu values were calculated to derive C–V fractal modeling. Threshold values of Cu are identified in the C–V log–log plots (Fig. 8), which indicate a power–law relationship between copper contents and volumes occupied in different realizations (Table 3). Based on the log–log plots, threshold values of Cu are similar in sims 3, 4 and 7 with three thresholds in 0.01%, 0.7% and 2.23% of Cu values. The log–log plots of sims 1, 5 and 9 show four threshold values which equal to 0.005%, 0.79%, 2.23% and 3.54%. However, log–log plots of sims 2 and 6 indicate four threshold values for Cu which are 0.007%, 0.79%, 1.99% and 3.54%. Additionally, three threshold values were defined in sims 8 and 10 in 0.03%, 0.7% and 2.5%. Moreover, the log–log plot for E-type illustrated three Cu threshold values in 0.25%, 0.63% and 1.25%, as depicted in Fig. 8 and Table 3.

Table 2
Cu threshold values were recognized using C–V fractal model for different realizations and E-type.

<table>
<thead>
<tr>
<th>Realization no.</th>
<th>First (%)</th>
<th>Second (%)</th>
<th>Third (%)</th>
<th>Fourth (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sim 1</td>
<td>0.005</td>
<td>0.79</td>
<td>2.23</td>
<td>3.54</td>
</tr>
<tr>
<td>sim 2</td>
<td>0.007</td>
<td>0.79</td>
<td>1.99</td>
<td>3.54</td>
</tr>
<tr>
<td>sim 3</td>
<td>0.01</td>
<td>0.7</td>
<td>2.23</td>
<td>–</td>
</tr>
<tr>
<td>sim 4</td>
<td>0.01</td>
<td>0.7</td>
<td>2.23</td>
<td>–</td>
</tr>
<tr>
<td>sim 5</td>
<td>0.005</td>
<td>0.79</td>
<td>2.23</td>
<td>3.54</td>
</tr>
<tr>
<td>sim 6</td>
<td>0.007</td>
<td>0.79</td>
<td>1.99</td>
<td>3.54</td>
</tr>
<tr>
<td>sim 7</td>
<td>0.01</td>
<td>0.7</td>
<td>2.23</td>
<td>–</td>
</tr>
<tr>
<td>sim 8</td>
<td>0.003</td>
<td>0.7</td>
<td>2.5</td>
<td>–</td>
</tr>
<tr>
<td>sim 9</td>
<td>0.005</td>
<td>0.79</td>
<td>2.23</td>
<td>3.54</td>
</tr>
<tr>
<td>sim 10</td>
<td>0.003</td>
<td>0.7</td>
<td>2.5</td>
<td>–</td>
</tr>
<tr>
<td>E-type</td>
<td>0.25</td>
<td>0.63</td>
<td>1.25</td>
<td>–</td>
</tr>
</tbody>
</table>

Fig. 8. Different Cu populations based on C–V multifractal modeling in different sim and E-type in the hypogene zone of the Sungun deposit.

Please cite this article as: Soltani, F., et al., Delineation of alteration zones based on Sequential Gaussian Simulation and concentration–volume fractal modeling in the hypogene..., J. Geochem. Explor. (2014), http://dx.doi.org/10.1016/j.gexplo.2014.02.007
Based on the C–V modeling, 3D models of hypogene zone were generated in different realizations (Fig. 9). Some voxels with Cu high grade (>2.23% or >3.54%) are located in the upper parts of the hypogene zone and can be classified in the supergene enrichment zone. The propylitic alteration zone is a barren or weakly mineralized zone in the porphyry deposits (Berger et al., 2008; Lowell and Guilbert, 1970). According to the C–V fractal modeling on the results of SGS results, the Cu values of the alteration zone can be lower than 0.01% (sims 3, 4 and 7), 0.003% (sims 8 and 10), 0.005% (sims 1, 5 and 9), 0.007% (sims 2 and 6) and 0.25% (E-type).

Based on the Lowell and Guilbert (1970) model, potassic alteration zone occurs in the central part of the Cu porphyry deposits and hosts of high grade Cu mineralization. Based on C–V fractal modeling, potassic alteration has Cu values higher than 2.23% and 3.54% in different realizations and also Cu values higher than 1.26% can indicate potassic alteration zone due to E-type data (Table 3).

7. Comparison of fractal and alteration models of the deposit

Results of C–V modeling of the different realizations and E-type are correlated with the 3D alteration zone models of the hypogene zone of Sognun deposit consisting of potassic, phyllic and propylitic zones. These were generated by utilizing RockWorks™ v. 15 software and geological drillcore data (Fig. 10).

Carranza (2011) has illustrated an analysis for calculation of spatial correlations between two binary especially mathematical and geological models. An intersection operation between results derived via C–V fractal model and different alteration zones in the geological model (Table 3) was performed to obtain the numbers of voxels corresponding to each of the four classes of overlap zones as shown in Table 3. Utilizing the obtained numbers of voxels, Type I error (T1E), Type II error (T2E), and overall accuracy (OA) of the fractal model were estimated with respect to different alteration zones due to geological data (Carranza, 2011).

Based on C–V fractal modeling in different simulations (sims), propylitic alteration zone was correlated with Cu values lower than 0.01%, 0.003%, 0.005%, 0.007% and 0.25% (Table 3). Comparison between the alteration zone obtained from 3D geological modeling and the Cu thresholds from the C–V fractal modeling reveals that the propylitic zone is overlapped with the Cu values lower than 0.005% (sims 1, 5 and 9) more than the other results because of the fact that OA in the threshold (0.94) is higher than the others, as shown in Table 3. However, the OA between the alteration zone and C–V fractal modeling obtained by E-type data has a low value (0.7). Overall accuracies of the phyllic alteration zone with respect to the results of the fractal modeling of sim are between 0.36 and 0.59, but which indicate that the phyllic zone gives better results to recognize Cu values between 0.25 and 0.63% due to C–V modeling on E-type data in the deposit (Table 4).
A comparison between C–V fractal modeling of sim and the potassic alteration zone in the 3D geological model indicates that high value of OA (0.816) exists between Cu values higher than 2.23% (sims 1, 5 and 9) and potassic alteration zone, as shown in Table 5. The correlation shows that the results obtained by sims 1, 5 and 9 are proper for the separation of potassic and propylitic alterations, but threshold values obtained from C–V fractal modeling based on the E-type data are more proper than the other realizations.

Moreover, correlation between geological data and results obtained by C–V fractal model represents a cross-section (Fig. 10). There is spatial coincidence between alteration zones defined by the C–V and SGS modeling and the zones defined by modeling of geological drillcore data. The propylitic alteration derived via C–V and SGS modeling occurs in marginal parts of the area which has good correlation with geological data in the southern part of the section. However, potassic alteration obtained by SGS and C–V modeling is situated in the central part of a cross-section which confirmed the geological data (Fig. 10).

8. Conclusion

Conventional geological modeling based on drillcore data is fundamentally essential for the determination of ore zone spatial structures, but ore grades are not observed in the methods. The ore grade variations in an ore deposit are obvious and salient features. Given the problems as mentioned above, using a series of mathematical analyses such as geostatistical simulation and fractal modeling seems to be inevitable. In many cases, drillcore logging in the geological study deals with the lack of proper diagnosis of geological phenomenon to identify alteration

Table 3
Matrix for comparing performance of fractal modeling results with geological model. A, B, C, and D represent numbers of voxels in overlaps between classes in the binary geological model and the binary results of fractal models (Carranza, 2011). OA, T1E and T2E with respect to propylitic alteration zone resulted from geological model and first threshold values of Cu obtained through C–V fractal modeling of different realizations and E-type in the hypogene zone.

<table>
<thead>
<tr>
<th>Fractal model</th>
<th>Inside zone</th>
<th>Outside zone</th>
<th>Inside zone</th>
<th>Outside zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>C–V fractal model of sims 1, 5 and 9 (Cu < 0.005%)</td>
<td>A 8 B 148</td>
<td>C 8 D 3558</td>
<td>TIE 0.9069</td>
<td>T2E 0.03993</td>
</tr>
<tr>
<td>C–V fractal model of sims 3, 4 and 7 (Cu < 0.01%)</td>
<td>A 25 B 333</td>
<td>C 86 D 3348</td>
<td>TIE 0.7747</td>
<td>T2E 0.0895</td>
</tr>
<tr>
<td>C–V fractal model of sims 2 and 6 (Cu < 0.007%)</td>
<td>A 13 B 220</td>
<td>C 98 D 3461</td>
<td>TIE 0.8828</td>
<td>T2E 0.0597</td>
</tr>
<tr>
<td>C–V fractal model of sims 8 and 10 (Cu < 0.003%)</td>
<td>A 14 B 263</td>
<td>C 97 D 3418</td>
<td>TIE 0.8738</td>
<td>T2E 0.0714</td>
</tr>
<tr>
<td>C–V fractal model of E-type (Cu < 0.25%)</td>
<td>A 39 B 842</td>
<td>C 72 D 2839</td>
<td>TIE 0.6486</td>
<td>T2E 0.2287</td>
</tr>
</tbody>
</table>

Overall accuracy = (A + D) / (A + B + C + D)

Type I error = C / (A + C)

Type II error = B / (B + D)

Fig. 9. Alteration zones in the hypogene zone of the Sungun deposit based on geological model: a) phyllic; b) potassic and c) propylitic.

Please cite this article as: Soltani, F., et al., Delineation of alteration zones based on Sequential Gaussian Simulation and concentration-volume fractal modeling in the hypogene..., J. Geochem. Explor. (2014), http://dx.doi.org/10.1016/j.gexplo.2014.02.007
zones due to a series of established modeling based on mathematical analyses such as geostatistical simulation and fractal modeling. The Gaussian simulations honor the covariance models of the data point and that is why they are appropriate for modeling of processes with extreme large continuity. The SGS is useful in generating relatively various

Table 4
OA, T1E and T2E with respect to phyllic alteration zone resulted from geological model and threshold values of Cu obtained through C-V fractal modeling of different realizations and E-type in the hypogene zone.

<table>
<thead>
<tr>
<th>Phyllic alteration of geological model</th>
<th>Inside zones</th>
<th>Outside zones</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-V fractal model of E-type (0.25% < Cu < 0.63%) Inside zones</td>
<td>A 895</td>
<td>B 279</td>
</tr>
<tr>
<td>C-V fractal model of E-type (0.63% < Cu < 1.26%) Inside zones</td>
<td>A 287</td>
<td>B 106</td>
</tr>
<tr>
<td>C-V fractal model of E-type (0.005% < Cu < 0.79%) Inside zones</td>
<td>A 1918</td>
<td>B 598</td>
</tr>
<tr>
<td>C-V fractal model of E-type (0.79% < Cu < 2.23%) Inside zones</td>
<td>A 652</td>
<td>B 207</td>
</tr>
<tr>
<td>C-V fractal model of E-type (2.23% < Cu < 3.54%) Inside zones</td>
<td>A 8</td>
<td>B 2</td>
</tr>
<tr>
<td>C-V fractal model of E-type (0.01% < Cu < 0.7%) Inside zones</td>
<td>A 1874</td>
<td>B 873</td>
</tr>
</tbody>
</table>

Table 5
OA, T1E and T2E with respect to potassic alteration zone resulted from geological model and threshold values of Cu obtained through C-V fractal modeling of different realizations and E-type in the hypogene zone.

<table>
<thead>
<tr>
<th>Potassic alteration of geological model</th>
<th>Inside zones</th>
<th>Outside zones</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-V fractal model of E-type (1.26% < Cu) Inside zones</td>
<td>A 3</td>
<td>B 14</td>
</tr>
<tr>
<td>C-V fractal model of E-type (2.23% < Cu) Inside zones</td>
<td>A 1</td>
<td>B 1</td>
</tr>
<tr>
<td>C-V fractal model of E-type (3.54% < Cu) Inside zones</td>
<td>A 159</td>
<td>B 570</td>
</tr>
</tbody>
</table>

Please cite this article as: Soltani, F., et al., Delineation of alteration zones based on Sequential Gaussian Simulation and concentration-volume fractal modeling in the hypogene..., J. Geochem. Explor. (2014), http://dx.doi.org/10.1016/j.gexplo.2014.02.007
realizations in the ore deposits, where computational efficiency and effective implementation are important.

In this paper, the SGS and C-V fractal models were utilized to delineate different alteration zones in the hypogene zone of Sungun Cu porphyry deposit, NW Iran. Investigation of the deposit indicates that the results derived via geostatistical simulations can be used for the separation of alteration zones by fractal modeling. Furthermore, the three realizations (sims 1, 5, and 9) show the proper results for delineation of potassic and propylitic alteration zones. Moreover, C-V modeling on E-type data is suitable for phyllic alteration. On the other hand, C-V fractal modeling based on E-type data is proper for moderate Cu values.

Correlation between results and alteration zones obtained by geochemical model of the hypogene zone reveals that propylitic alteration has Cu values lower than 0.005% and potassic alteration zone correlated with Cu values higher than 2.23%. There is a good relationship between phyllic alteration zone and Cu values between 0.25% and 0.63% derived by E-type data. Moreover, the voxels with high values of Cu (>3.54%) which exist in upper levels of the hypogene zone can be classified in supergene enrichment zone of the deposit. Furthermore, the obtained results strongly support the Lowell and Guilbert (1970) model for alteration zones of porphyry copper deposits.

Acknowledgments

The authors would like to thank Mr. Amir Bijan Yasrebi from Camborne School of Mines for his remarkable contribution. The authors would like to thank the editors and reviewers of this paper for their comments and valuable remarks.

References

Please cite this article as: Soltani, F., et al., Delineation of alteration zones based on Sequential Gaussian Simulation and concentration–volume fractal modeling in the hypogene..., J. Geochem. Explor. (2014), http://dx.doi.org/10.1016/j.gexplo.2014.02.007

