Histopathological Study of *Haemonchus contortus* in Herrik Sheep Abomasum

Aliasghar Tehrani1, Javad Javanbakht2*, Meysam Jani3, Farhang Sasani1, Amirali Solati4, Mojtaba Rajabian1, Farshid Khadivar3, Hamid Akbari5 and Mohammadreza Mohammadian3

1Department of Pathology, Faculty of Veterinary Medicine, University of Urmia, Urmia, Iran
2Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
3Graduate Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
4Department of Veterinary Medicine, Islamic Azad University, Saveh branch, Saveh, Iran
5Department of Clinical Science, Faculty of Veterinary Medicine, University of Urmia, Urmia, Iran

Abstract

Hemochonosis is a very common disease in small ruminants caused by *Haemonchus contortus*, a blood sucking parasite causing anaemia that may be fatal particularly to young animals. The present study was conducted to determine the prevalence of *Haemonchus contortus* in slaughtered sheep’s at Urmia abattoir located in the North West of Iran. A total of 1227 lambs were slaughtered and examined from July 2010 to July 2011 in Urmia abattoir. In case of sheep, 225 out of 2421 were positive and prevalence of *Haemonchus contortus* infestation was 9.3%. Sex wise prevalence of *Haemonchus contortus* in sheep was 33.08% (76/229) in male and 66.22% (149/225) in female. The females indicated significantly (P<0.05) higher prevalence (66.22%) as compared to males (33.08%). The highest prevalence was recorded in the spring (April) and the lowest was in summer (July), respectively. On microscopic examination, infiltration of mononuclear cells and eosinophils in gastric glands, periglandular hyperemia and hemorrhage, mucous gland hyperplasia, connective tissue proliferation and necrosis was observed. Also, in mixed abomasal infection with *Haemonchus and Ostertagia species*, mucosal hyperplasia and increased mucous glands and sometimes cystic glands were seen. Statistical analysis using SPSS software, and chi-square test, demonstrated a non-significant difference between ages and abomasal pH values of infected and healthy sheep (p<0.05). But the difference between sexes, seasons and abomasal lesions was significant (p<0.05).

Keywords: Abomasal; Haemonchus; Sheep; Urmia; Statistical

Introduction

Abomasum is one of the most important sites for living bursate nematodes belonging to *Trichostrongylidae* family in small ruminants, because it is the site location for 3 pathogen species of GI nematodes e.g., *Haemonchus spp.*, *Teladorsagia spp.*, *Ostertagia spp* and *Trichostrongylus spp.*, meanwhile it was shown that gastrointestinal nematodes could be harmful to the health mortalities, reduce weight gain and other production losses [1,2]. Small ruminants play an important role in maintaining family stability by providing meat, milk, skin and wool, earn cash income and play traditional social and religious roles. Health disorders in all classes of small ruminants represent the major problems and largely on the economics of sheep and goat production [3]. The gastrointestinal nematode, *Haemonchus contortus* (Barber’s pole worm), is a major pathogen of ovine throughout the temperate and tropical regions of the world and is a significant cause of production losses. Debilitating infection with this parasite is most commonly seen in young animals while resistance to infection develops, with exposure, in older ovine [4]. Female worms are 18-30 mm long and are easily recognized by the ‘barbers pole’ appearance of the white ovaries and uteri twisting for the length of the worm around a red blood-filled intestine and males are 10-20 mm long and uniformly reddish-brown [5]. This parasite is a gastrointestinal nematode of special importance in associated with to small ruminant production in warm climates [6] and is a blood feeding nematode which parasitises the abomasum and presents a serious constraint to ovine production in areas with predominantly summer rainfall [7]. The fourth larval (L4) and adult stages of this worm suck blood and in addition, move and leave wounds that hemorrhage from the abomasal wall of the host. A blood sucking *H.contortus* can suck about 0.05 ml blood per day in ovine [8]. *H.contortus* is of primary concern since it is a highly pathogenic blood-feeder helminth that causes anaemia and reduced productivity and can lead to death in infected animals [9] and the diagnosis of *Haemonchosis* is usually based upon clinical signs and fecal examinations. Eggs are found in feces when the damage has already been done. So ELISA enables detection of sub clinical infection [10]. Fayza Ahmed Omer et al. [11] showed that histopathological changes of the abomasum were of severe mucosal and submucosal haemorrhages. Epithelial cells indicated degeneration and other revealed hypertrophy. Gastric glands demonstrated some changes and contained, mononuclear cells dominated with eosinophils. Terefe et al. [12] observed that sheep infected with *Oestrus ovis* and *H. contortus* in a natural way eliminated smaller quantities of eggs in feces than those infected with only *H. contortus*. Previous infection with *O. ovis* in the nasal cavity also reduces the development and fertility of *H. contortus* in the abomasum. This reduction is associated with eosinophilia, an increase in abomasal eosinophils and globular leukocytes, as well as an inflammatory response in the abomasal mucosa [12,13]. Among the diseases that impose the survival and productivity of ovine and goats, gastrointestinal nematode infection ranks highest on a global index, with Barber’s pole worm being of overwhelming importance [14]. The objective of this study was to histopathological study of *Haemonchus contortus* in Herrik sheep abomasums.

*Corresponding author: Dr. Javad javanbakht, Department of Pathology, Faculty of veterinary Medicine, University of Tehran, Tehran, Iran, Tel: +989372512581; Email: javadjavanbakht@ut.ac.ir

Received May 02, 2012; Accepted June 13, 2012; Published June 19, 2012

Copyright: © 2012 Tehrani A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Materials and Methods

Study area

The district Urmia of agro-ecological zone was selected for the present study. Climatically, the study region is subtropical and receives an annual rainfall of about 150-350mm. The temperature is highest in June, before the onset of monsoon season. During summer, the daily maximum temperature exceeds 45°C and rarely declines below 22°C. Relative humidity is lowest during April-May and rises during the monsoon season. One year cycle is divided into four seasons viz. winter (December-February) spring (March-April) summer (May-September) and autumn (October-November). summer also includes monsoon season (July-August).

Animals

During the period from July 2010 to July 2011, a total of 2421 Herrik sheep ranging from 2 to 5 years of both sexes were subjected to a careful post-mortem examination during abattoir inspection in Urmia slaughter houses in West Azarbijan province (coordinates: 37°33N, 45°04E) Iran. The Herrik and Afshari sheep were selected to be examined as they are the most important and numerous native breed. The resulting samples were sent to the Laboratory of Parasitology and pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran, for parasitological and histopathological examination.

Parasitological investigation

Abomasa of total 2421 sheep slaughtered at Urmia abattoir were examined for the presence of adult worm of *H. contortus*. Sheep were comprising on male (n=859) and female (n=1562). Each abomasum was slit open and their contents washed gently with water in the parasitology laboratory, and examined within 3h of slaughter. The resulting samples were sent to the Laboratory of Parasitology and histopathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran, for parasitological and histopathological examination.

Histopathological examination

A 10-mm-long sample of the abomasum segment without any injury was removed, fixed, and prepared for histopathological examination. Tissue fragments were fixed in 10% neutral buffered formalin solution for 24 h, after stabilizing embedded in paraffin, sectioned at 5 μm thickness and then, stained with hematoxylin and eosin (H&E).

Statistical analysis

Statistical analysis using spss software and Chi-square test was applied for the statistical analysis of the data [17].

Results

Overall prevalence of *H. contortus* in sheep

In this study, 225abomasa (9.3%) were infected with *Haemonchus contortus*. Sex wise prevalence of *H. contortus* in sheep was 33.08% (76/229) in male and 66.22% (149/225) in female. In the monthly survey, the highest rate of infection was in April (22.9%) and the lowest was in July (14.9%). The seasonal survey shows that the highest and lowest infection rates are in the spring (13.6%) and in summer (2.4%), respectively. In statistical analysis, there was a significant difference between seasons and the prevalence of the parasite (P<0.05). The study of parasites in the abomasa of 2421 sheep revealed that acute and chronic forms of *haemonchosis* are common in the region. And pre acute form of infection has no sign of presence or is utterly rare in above-mentioned region (Table 1, 2 and Figure 1).

Macroscopic and microscopic findings

Petechial hemorrhage in the abomasal mucosa (Probably due to the attachment of the parasite) (Figure 2), extensive mucosal hemorrhage, inflammation, mucous secretions around lesions and paleness of internal organs were seen (Figure 3). Also abomasal contents were fluidal and partially covered with free blood; the carcasses were paled and have generalized edema and fluid throughout of the body cavities secondary to hypoproteinemia. Moreover, following findings were witnessed: mononuclear cells infiltration (lymphocytes, monocytes and plasma cells), prominent eosinophilic infiltration in mucous glands

<table>
<thead>
<tr>
<th>Seasons</th>
<th>Intact (%)</th>
<th>Infested (%)</th>
<th>Total number of inspections</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>171</td>
<td>11</td>
<td>182</td>
</tr>
<tr>
<td>February</td>
<td>122</td>
<td>10</td>
<td>132</td>
</tr>
<tr>
<td>March</td>
<td>73</td>
<td>5</td>
<td>79</td>
</tr>
<tr>
<td>April</td>
<td>184</td>
<td>5</td>
<td>189</td>
</tr>
<tr>
<td>May</td>
<td>270</td>
<td>58</td>
<td>328</td>
</tr>
<tr>
<td>June</td>
<td>271</td>
<td>7</td>
<td>278</td>
</tr>
<tr>
<td>Total</td>
<td>2195</td>
<td>226</td>
<td>2421</td>
</tr>
</tbody>
</table>

Table 1: Abomasum monthly contamination with *Haemonchus contortus*.

<table>
<thead>
<tr>
<th>Seasons</th>
<th>Intact (%)</th>
<th>Infested (%)</th>
<th>Total number of inspections (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>735(86.4%)</td>
<td>116(13.6%)</td>
<td>851(100%)</td>
</tr>
<tr>
<td>Summer</td>
<td>612(97.6%)</td>
<td>15(2.4%)</td>
<td>627(100%)</td>
</tr>
<tr>
<td>Autumn</td>
<td>482(87.6%)</td>
<td>68(12.4%)</td>
<td>550(100%)</td>
</tr>
<tr>
<td>Winter</td>
<td>366(93.1%)</td>
<td>27(6.9%)</td>
<td>393(100%)</td>
</tr>
<tr>
<td>Total</td>
<td>2195(90.7%)</td>
<td>226(9.3%)</td>
<td>2421(100%)</td>
</tr>
</tbody>
</table>

Table 2: Abomasum seasonal contamination with *Haemonchus contortus*.
Abomasal pH values and relationship between sex, ages, season and prevalence in sheep

With regard to determination of infected abomasal pH values, slight increase in PH was seen (3.5 to 4.5), but there wasn’t a close correlation between pH values of parasitized and healthy abomasa (P>0.05). Also there wasn’t a significant difference between ages of infected sheep (P>0.05). But the difference between sexes, seasons and abomasal lesions was significant (p>0.05). Pertaining to seasons in which amount of rainfalls are considerable, temperature would result in dramatic increase of parasite frequency. Subsequently more sheep are afflicted. Needless to say, lesions would be widely seen in the abomasa either. So, there is a direct relevance between season and prevalence of lesions in the abomasa (P<0.05). And this issue occurs during the spring in the North West region of Iran (West Azerbaijan).

Discussion

Haemonchosis is a serious health problem which causes lower production due to high morbidity, mortality, and cost of treatment and control measures [18]. The results revealed that the infected animals (sheeps) harbour *H. contortus* infection throughout the year at all the studied sites with varied incidence. It could be inferred from the infection level that the permanent flocks in azerbaijan west Urmia areas had substantial worm burdens of *H. contortus*. The present study demonstrated that prevalence of infection was 9.3% and the average rate of infection is 49 % in Iran [19]. So this rate is much less than average of infection in Iran. This is probably due to cold winters and hot summers that destroy the parasite. According to studies by Eslami et al. [19] rate of infection in sheep is 49%, and 40.8% in goats, 0.8% in wild sheep, 22% in cattle, and 12% in camels. The seasonal survey demonstrated that the highest and lowest infection rates are in the spring (13.6%) and in summer (2.4%), successively. Recently O’Sullivan and Donald suggested that spring rise was due to a temporary depression of immunological capacity brought about by endocrine changes associated with lactation, which could result in a resumption of development of arrested larvae, an increased rate of establishment

![Figure 1](image1.png)

Figure 1: Abomasum monthly contamination with *Haemonchus contortus*.

![Figure 2](image2.png)

Figure 2: Petechial in the mucosa of the abomasum.

![Figure 3](image3.png)

Figure 3: Hemorrhage in between the glands and inflammatory cell infiltration.

![Figure 4](image4.png)

Figure 4: Infiltration of inflammatory cells in the mucosa of the abomasum.

![Figure 5](image5.png)

Figure 5: Increase in mucous glands and hemorrhage in between the glands.

![Figure 6](image6.png)

Figure 6: Hyperplasia and cystic glands in the abomasum.
nematode infection models [36-38]. These observations suggest that
supports the findings of Anthony et al. [34,35] who had suggested that
another study by Scott et al. [26], fundus region thickening was seen,
seen around the adult worms in pyloric region [22]. Moreover, in
examination by Nayebzadeh et al. [22] proliferation of macrophages
and Nayebzadeh et al. [22] reported it too. Additionally in microscopic
al. [28] reported anemia in merino sheep. Also, Courtney et al. [33]
during the chronic infection with this parasite in sheep. Zacharias et
stages and its changes. In Anderson [32] studies, weight loss is reported
Nayebzadeh et al. [22] and Troell et al. [31] studied at parasite growth
absence of nematodes in the gut. Meanwhile, sometimes the focal
Figure 7: Proliferation of Connective tissue.
of newly ingested larvae and increased fecundity of female worms.
And also in the monthly survey, the highest rate of infection was in
April (22.9%) and the lowest was in July (14.9%). Thus Blitz and Gibbs
have demonstrated that transplantation of such arrested larvae into
worm-free, susceptible ewes in winter did not result in the immediate
maturation of the parasites. When maturation occurred, it coincided
with the time that spring rise regularly takes place in this area (April),
some 10-12 weeks after transplanting the arrested larvae. Moreover,
numerous attempts to induce maturation of arrested larvae in sheep
during the winter by administration of immunosuppressive drugs
have failed [20-22]. In Macroscopic findings, petechial hemorrhage in
the mucosa and severe hyperemia in mucosal folds were seen as
described by McKenna PB [21]. Also eosinophil infiltration has been
observed that while corresponding to those of Nayebzadeh et al. [22].
Eosinophils are considered to be important elements in the
response against Haemonchus infections Balice et al. [23]. In the study,
there was an increased number of circulating blood eosinophils in
the sheeps infected with Haemonchus larvae. This was in agreement
with Terefe et al. [12]. There is also some evidence suggesting that
eosinophils may contribute to pathogenesis during parasitic infection
[13]. Moreover, it has previously been shown that a number of ovine
parasitic gastrointestinal nematodes produce a factor(s) that promote
eosinophil migration in vitro [24]. Yacob et al. [25] reported the
presence of an early and high eosinophilia and migration of the same
cellular components into the abomasal and intestinal mucosa in the
absence of nematodes in the gut. Meanwhile, sometimes the focal
accumulation of lymphocytes and tissue thickening were seen that is
similar to that reported by Scott et al. [26]. Many studies have been
done on this parasite. Ahmed Mir et al. [27], Zacharias et al. [28] and
Scott et al. [26] have reviewed pathophysiology of Haemonchosis. Also
Ameen et al. [29] and Wilson et al. [30] reported hematologic changes.
Nayebzadeh et al. [22] and Troell et al. [31] studied at parasite growth
stages and its changes. In Anderson [32] studies, weight loss is reported
during the chronic infection with this parasite in sheep. Zacharias et
al. [28] reported anemia in merino sheep. Also, Courtney et al. [33] and
Nayebzadeh et al. [22] reported it too. Additionally in microscopic
examination by Nayebzadeh et al. [22] proliferation of macrophages
and fibroblasts and infiltration of lymphocytes and eosinophils have
seen around the adult worms in pyloric region [22]. Moreover, in
another study by Scott et al. [26], fundus region thickening was seen,
that caused by mucous cells hyperplasia. Also Mir et al. [15] reported
that lymphocytes from both naive lambs and immune sheep responded to
a similar spectrum of molecular and also this report therefore
supports the findings of Anthony et al. [34,35] who had suggested that
lymphocyte proliferative responses in naive sheep were important in
innate resistance to this parasite weight fraction in soluble antigen.
Immunosuppression is known to take place in some gastrointestinal
nematode infection models [36-38]. These observations suggest that

the chronic nature of primary H. contortus nematode infections may be
due to a change in the type of immune response induced by larval and
adult nematodes and that the adult nematodes may actively subvert the
initial immune response induced after infection.

References
on the Prevalence of Some Gastrointestinal Helminths of Sheep in Gharbia
trichostrongylid nematode infections in sheep under traditional husbandry
of the Susceptibility of Two Natural Infected Breeds of Goat to Haemonchus
contortus in Neukka Goverenorate, Enugu State, Nigeria. Animal Research
International 2: 342-345.
in Ruminants. University of Sydney, Australia.
gastrointestinal nematode infections of sheep in a semi-arid region of eastern
seasonal dynamics of abomasal helminths in wild red deer from central Spain.
J Parasitol 95: 1031-1037.
chemotherapy of various helminths in dairymilk sheep in and around Lahore.
The Pakistan J Sci 19: 15-16.
fanamach system for on-farm use by sheep and goat producers in the
south eastern U.S. Vet Parasitol 147: 89-95.
burden on the detection of Fasciola hepatica antigens in sera and feces of
contortus in naturally and Experimentally Infected Sudanese Desert Sheep.
Global Veterinaria 5: 84-87.
contortus eggexcretion and female length reduction in sheep previously
infected with Oestrusovis (Diplora-Oestrades) larvae. Vet Parasitol 120: 271-
283.
Counter-protective role for interleukin-5 during acuteToxoplasma gondii
Investing in animal health research to alleviate very. International Livestock
Research Institute (ILRI). Nairobi, Kenya.
in sheep experimentally infected with Haemonchus contortus. World J Agric
18. Qamar MF, Maqbool A (2012) Biochemical studies and sero diagnosis of
in Ruminants. University of Sydney, Australia.
20. Brunsdon RV (1966) The immunity of sheep to trichostrongyle infestations
following reduction of the circulating leucocyte count by oral administrations

25. Yacob HT, Bassazine BK, Basu AK (2006) Experimental concurrent infection of Afar breed goats with Oestrus ovis (L1) and Haemonchus contortus (L3); interaction between parasite populations, changes in parasitological and basic haematological parameters. Exp Parasitol 120: 180-184.

Submit your next manuscript and get advantages of OMICS Group submissions

Unique features:
- User friendly/feasible website-translation of your paper to 50 world’s leading languages
- Audio Version of published paper
- Digital articles to share and explore

Special features:
- 200 Open Access Journals
- 15,000 editorial team
- 21 days rapid review process
- Quality and quick editorial, review and publication processing
- Indexing at PubMed (partial), Scopus, DOAJ, EBSCO, Index Copernicus and Google Scholar etc
- Shering Option: Social Networking Enabled
- Authors, Reviewers and Editors rewarded with online Scientific Credits
- Better discount for your subsequent articles

Submit your manuscript at: http://www.omicsonline.org/submission