توزیع حدی آماره‌های مربوط

سید مرتضی امینی

چکیده
در این مقاله اشاره‌ای کوتاهی به فضایای حدی آماره‌های مربوط می‌کنیم.

واژه‌های کلیدی: فضایای حدی, توزیع حدی, آماره‌های مربوط.

1- مقدمه
مبحث فضایای حدی و گراش و حد در توزیع
یکی از مباحث اساسی است که بخشی از این توزیع دانشجویان کارشناسی رشته آمار باید بدانند.

از این فضایا، فضایای حد مربوط در مورد توجه قرار دارد. قضیه حد مربوط به توزیع حجم مجموع متغیرهای رتبه‌ای و یا به طور معادل میانگین آنها می‌باشد. همان طور که در درس آمار ریاضی به آن اشاره می‌شود، مجموع متغیرهای رتبه‌ای مناسب از توزیع

4 ها نظر توزیع نماینده، نرمال، دو جمله‌ای و مشابه آن

1- استادیار گروه آمار، دانشکده علوم ریاضی، دانشگاه تهران.
شده با طول عمر سیستم های سری و موازی از اهمیت زیادی برخوردار هستند.

بنابراین قضاوت‌های حدی مربوط به این آمارها ها نیز نقض می‌باشد. در این مقاله اساساً در مباحث استنباطی باید می‌کنند. در این مقاله سعی داریم به مشابه ساده و با اثرات مثال هایی به برخی از این قضاوت‌ها اشاره نماییم تا زمینه آشنا درمکت دانشجویان با گستره کاربرد قضاوت‌های حدی در استنباط آماری فراهم می‌کند.

[آیه [۳،۴۰۸]]

۲- غش اصلی

برای شروع ابتدا غرب است به یادآوری مباحث اولیه آماره‌های مربوط به پردازی.

تعریف ۱. فرض کنید $Y_1, Y_2, ..., Y_n$ دنباله‌ای از متغیرهای تصادفی باشد به طوری که F_n تابع توزیع تجمعی احتمال Y_n باشد آنگاه به می‌گوییم Y_n می‌کند و هم تابع Y اکر ابزار هر Y_n که نمایش می‌کند تابع F تابع توزیع تجمعی $F_n(y) = F(y), y$ لکسی به احتمال متغیر تصادفی Y است.

حال باید باید به یک مساله ساده پردازی، ابتدا تشان می‌دهیم یا همان بیشینه نمایش تصادفی در توزیع به صفر و یا به یک متغیر تصادفی نداشته باشد می‌کنند. متغیر X_{n-n} با ابتدا به جمعی a تابع x را در نقطه T تصادفی X_{n-n} که می‌گوییم اکر تابع توزیع تجمعی احتمال متغیر تصادفی n از جمله ای داریم.

$$P(X_{n-n} \leq x) = P \left(\sum_{i=1}^{n} X_i \leq x \right)$$

توزیع حدا به دست آمده به توزیع کامی معرف است.

با اضافه کردن پارامترهای مکانی و مقیاسی شکل کامپری از توزیع کامی به تایب توزیع تجمعی احتمال

\[F(x; \mu, \sigma) = e^{-(x-\mu)/\sigma)}', x \in R \]

(3)

به دست می‌آید. حال به مثال دیگر توجه کنید.

مثال ۲. فرض کنید \(X_n, \ldots, X_1\) نمونه تصادفی مستقل و هم توزیعی از توزیع پارتو با تابع توزیع تجمعی

باشد. در این حالت داریم \(F(x) = 1 - x^{-\alpha}, x > 1\)

بنابراین بسته به متناهی‌یا نامتناهی‌ی بودن \(\alpha\) توزیع حدا

\[x \rightarrow \infty \]

\[x \rightarrow \infty \]

پایه‌ی و یا صفر انت. سما‌ل فوق برای هر متغیر

\(X_{n,n}\) تصادفی \(F\) با هر تابع توزیع تجمعی احتمال دخواهان \(F\) برتر است. با این حال مسائل زیر نشان می‌دهد که می

توان با اضافه کردن ضرایب و ثابت های مکانی و مقیاسی

توزیع‌های حدا غیر تابه‌ی بهتری پیدا کنیم برای

\(X_{n,n}\) نمونه تصادفی مستقل و \(X_n, \ldots, X_1\) نمونه تصادفی مستقل و هم توزیعی از توزیع نمایی استاندارد با تابع توزیع تجمعی

\[F(x) = 1 - e^{-x}, x > 0 \]

در این حالت توزیع حدا به توزیع فرد به توزیع نمایی دو متغیره

\[\alpha = 1 \]

(4)

حالی خاصی از توزیع فرد به همان توزیع نمایی دو متغیره

در مثال سوم به توزیع حدا کمیتی نمونه تصادفی، ممکن پذیرته شده است که انتظار آن با باشیم به توزیع نمایی دو متغیره

\[\lim_{n \to \infty} P(X_n \leq x) = \lim_{n \to \infty} \left[F(x + \log n) \right] = \lim_{n \to \infty} \left[1 - e^{-x/n} \right] = \exp \left\{ -e^{-x} \right\} \]

برای این کار فرض کنید \(X_n, \ldots, X_1\) نمونه تصادفی مستقل و هم توزیعی یک متغیر تصادفی \(x\) باشد و قرار دهید (1) این داریم.

\[\lim_{n \to \infty} P(X_n \leq x) = \lim_{n \to \infty} \left[F(x) \right]^n \]

\[= \begin{cases} 0 & F(x) < 1 \\ 1 & F(x) = 1 \\ 1 & x \geq a \end{cases} \]
که حالت $\sigma = 1, \mu = 0$ ناب توزیع وابسته است. بی‌دی‌هی است که توزیع تصادفی X_n, \ldots, X_1 ناب توزیع $F_i(x) = 1 - (-x)^a$ برای $-1 < x < 0$ است. Y_n, \ldots, Y_1 یک توزیع تصادفی از توزیع نواری (بنا) با ناب توزیع تجمعی $F_i(y) = y^a, 0 < y < 1$ باشد. آنگاه داریم:

$$\lim_{n \to \infty} P(Y_{n,n} > n^{-\frac{1}{a}} y) = \lim_{n \to \infty} (1 - F_i(n^{-\frac{1}{a}} y))^n$$

$$= \lim_{n \to \infty} (1 - \frac{y^n}{n})^n$$

$$= \exp\{-y^a\}.$$

توجه کنید که حالت $\sigma = 1, \mu = 0$ ناب توزیع وابسته است. بی‌دی‌هی است که توزیع تصادفی X_n, \ldots, X_1 ناب توزیع $F_i(x) = 1 - (-x)^a$ برای $-1 < x < 0$ است. Y_n, \ldots, Y_1 یک توزیع تصادفی از توزیع نواری (بنا) با ناب توزیع تجمعی $F_i(y) = y^a, 0 < y < 1$ باشد. آنگاه داریم:

$$\lim_{n \to \infty} P(Y_{n,n} > n^{-\frac{1}{a}} y) = \lim_{n \to \infty} (1 - F_i(n^{-\frac{1}{a}} y))^n$$

$$= \lim_{n \to \infty} (1 - \frac{y^n}{n})^n$$

$$= \exp\{-y^a\}.$$

توجه کنید که حالت $\sigma = 1, \mu = 0$ ناب توزیع وابسته است. بی‌دی‌هی است که توزیع تصادفی X_n, \ldots, X_1 ناب توزیع $F_i(x) = 1 - (-x)^a$ برای $-1 < x < 0$ است. Y_n, \ldots, Y_1 یک توزیع تصادفی از توزیع نواری (بنا) با ناب توزیع تجمعی $F_i(y) = y^a, 0 < y < 1$ باشد. آنگاه داریم:

$$\lim_{n \to \infty} P(Y_{n,n} > n^{-\frac{1}{a}} y) = \lim_{n \to \infty} (1 - F_i(n^{-\frac{1}{a}} y))^n$$

$$= \lim_{n \to \infty} (1 - \frac{y^n}{n})^n$$

$$= \exp\{-y^a\}.$$
توزیع حداً سایر آماره‌های مربوط به غیر از را می‌توان با دو شیوه عمده زیر مورد بررسی قرار داد.

(البته این شیوه‌ها بر سه‌سمت اند که ما در این مقاله به دو شیوه متداول و معروف آن اشاره می‌کنیم.)

1- شیوه مرکزی یا چندکی

2- شیوه عایین یا فریئن

در شیوه چندکی یا فریئن توزیع حداً آماره مربوط \(X_{\text{r,n}} \) را می‌توان با دو شیوه متداول و معروف آن اشاره می‌کنیم.

\[
\lim_{n \to \infty} \frac{\xi}{n} = p; \quad 0 < p < 1,
\]

در این شیوه معمولاً آماره مربوط \(X_{\text{r,n}} \) را در احتمال و یا امید ریاضی مراتب مختلف به چندکی می‌کنیم. چندکی \(\xi_p \) می‌تواند در توزیع \(F \) برابر است با

\[
\xi_p = \inf \{ x; F(x) > p \}.
\]

در این حوزه، قضیه‌ای حداً بسیار بسیار که دانشجویان علاقه‌مند می‌توانند برخی از آن‌ها را در کتاب دیوید و ناگاراکی [2] بیانی اما من در انجا تا در بیان یک قضیه جالب توجه دیگر در حالت فرض اکتفا می‌کنیم. در حالت فرض بر نتایب بودن \(r \) در دست آوردن توزیع حداً آماره مربوط \(X_{\text{r,n}} \) را می‌توان با دسته‌بندی میل می‌کنند.

\[
E(X; \mu, \sigma, \xi) = \exp \left\{ -e^{(x-\mu)/\sigma} \right\}, \quad 0 < \xi Reverse; \quad \mu, \sigma \in R.
\]

است. با قرار دادن \(a > 0 \) توزیع فرشه (4) به دست می‌آید. مقدار \(a = \frac{1}{\xi} \) برای \(a > 0 \) توزیع وابسته (5) را تولید می‌کند. همچنین با حذف دانشجو از تابع توزیع (6) در دارایی

\[
\lim_{\xi \to \infty} E(X; \mu, \sigma, \xi) = \exp \left\{ -e^{(x-\mu)/\sigma} \right\}, \quad 0 < \xi Reverse; \quad \mu, \sigma \in R.
\]

که همان توزیع کامبی (3) است.

فضت 2. فرض که $\frac{b_n}{a_n}$ را برای $b_n \in \mathbb{R}, a_n > 0$ با بررسی

وجود داشته باشند به طوری که $n \geq 1$

$$P\left(\frac{X_{kn} - b_n}{a_n} \leq x\right) \to d \ G(x),$$

آنگاه برای $x < n \leq n$ داریم

$$P\left(\frac{X_{n-k+1n} - b_n}{a_n} \leq x\right) \to d \ G(x)\sum_{j=0}^{k-1} \frac{[-\log G(x)]^j}{j!}.$$

منابع

