نگری‌هد آب و خاک (علوم و منابع کشاورزی)
جلد 26، شماره 6، بهمن 1391، ص. 1450-1459

WinSRFR

(مطالعه موردی آبیاری گویچه‌یایی)

زهره تقی‌زاده ۱ - وحید رضا وردی‌نژاد ۲ - حمید اراهنیمی۳ - ندا خانی محمدی ۶

تاریخ دریافت: ۱۳۹۰/۱۲/۲۱
تاریخ پذیرش: ۱۳۹۱/۷/۲۶

چکیده

مساله اصلی روش‌هایی به‌منظور آبیاری سطحی پایین بودن باره‌های آبیاری است که عمدهاً از پدیدار شدن مدیریت و طراحی نامناسب ناشی می‌شود. این تحقیق به منظور آزمایش و تحلیل عملکرد سیستم آبیاری گویچه‌یایی، آزمایش مزرعه‌ای تحت کشت محصول ذرت علفی‌های انجام گرفت. برای بدست آوردن داده‌های صحرازی، سطح روش آبیاری گویچه‌یایی شامل آب‌های عمومی، یک در میان یک مانگ از دسته‌گرایی دسته‌گرایی و دیگر انرژی‌های با استفاده از اطلاعات مزرعه‌ای بر اساس دو WinSRFR، انجام و اکثر باران‌های آب و خاک باره‌ای این منظور برداشت کرد. در این مطالعه، سیستم پایین‌ترین منظره سیستم آبیاری گویچه‌یایی و ارزیابی کرده‌ایم. تحلیل حساسیت نشان داد که مدل پیشنهادی حساسیت پیشنهادی نسب به بی‌سیم و بی‌سیم، زمان بارانخوری و پرداختهای مالی زمان باران‌هایی که در میان یک مانگ از دسته‌گرایی و دیگر انرژی‌های استفاده می‌شود. با توجه به نتایج، پرداختهای مناسب مصرف می‌شود.

واژه‌های کلیدی: آبیاری گویچه‌یایی، ارزیابی عملکرد، مدل آبیاری سطحی

مقدمه

در سیستم‌های منطقه‌ای جهان بیش از ۹۰ درصد اراضی قاره‌ای، روی مزار علفی‌های آبیاری سطحی پایین بودن باره‌های آبیاری است که به طور عمده از پدیدار شدن مدیریت و طراحی نامناسب ناشی می‌شود. با توجه به هزینه زیاد سامانه‌های آبیاری تحت فشار، بهبود و اصلاح روی‌های آبیاری سطحی امری اجتناب ناپذیر است (۳). با وجود ابتدای روش‌هایی نوین

۱. اکثر گروه مهندسی آب، دانشگاه کشاورزی، دانشگاه اورمیه (Email: verdinejad@gmail.com)
۲. - نویسنده مسئول:
۳. - استاد ریزه گروه مهندسی آب و ابادانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران
سیرمود (SIROM) یا سی‌‌رومود یک مدل مرجع اصلی مدل‌های ایرانی است که برای کاربرد در طراحی و مدیریت آب‌های سطحی داشته می‌باشد.

text in the image
نتیجه‌داوری‌های بازاریابی برای بازار‌های جویحه تحت شرایط اجرای کارش در کشت و صنعت مسئولی فارس استفاده کرده. نتایج هیچ‌گاهی آن‌ها برای هدایت مقدار مختلف دو ورودی به جویحه و چهار مقدار مختلف شیب تولید جویحه که تنهی در جراید اجرا شده بود، نشان داد که دیگر بهنیا جهت حصول بازده آبیاری ایرانی 1/15 لیتر در ثانیه در تمام مراحل، تحت شرایط آزمایش می‌شود. نهایتاً در پیچ دیگر بروز مسئولیت در روش‌های متعدد از این فناوری که به عوان بسیار نرم و آرام بوده و آن را در این مزایایی که در مقاله‌های ملف‌های هیدرودینامیک و ایرانی- صرف پیش دادن سیستم به یک همین سیستم مشابه یک همین سیستم بشنوید...
جدول ۱- مشخصات فیزیکی خاک مزرعه ازمایشی

<table>
<thead>
<tr>
<th>رطوبت پذیردگی (درصد وزنی)</th>
<th>تغییرات زراعی (درصد وزنی)</th>
<th>وزن مخصوص ظاهری (gcm⁻³)</th>
<th>بافت خاک</th>
<th>عمق خاک (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/4</td>
<td>8/1</td>
<td>18/1</td>
<td>1/51</td>
<td>0-200</td>
</tr>
<tr>
<td>8/1</td>
<td>17/7</td>
<td>17/8</td>
<td>1/89</td>
<td>200-400</td>
</tr>
<tr>
<td>5/6</td>
<td>15/0</td>
<td>1/39</td>
<td>1/17</td>
<td>400-600</td>
</tr>
</tbody>
</table>

جدول ۲- اطلاعات مرتبط به شکل و هندسه جویچه‌ها برای هر یک از تجارب‌های تحت ازمایش در ابتدای فصل

<table>
<thead>
<tr>
<th>حداکثر عمق (سانتی‌متر)</th>
<th>عرض کف (سانتی‌متر)</th>
<th>عرض بالا (سانتی‌متر)</th>
<th>روش آبیاری</th>
<th>تعداد دفعات نمونه‌گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>۹</td>
<td>۲۵</td>
<td>۲۵</td>
<td>جویچه معمولی</td>
<td>۳۱</td>
</tr>
<tr>
<td>۱۰</td>
<td>۲۵</td>
<td>۴۵</td>
<td>جویچه میک گیره که در میان ناب‌آمد</td>
<td>۲۰</td>
</tr>
<tr>
<td>۱۱/۸</td>
<td>۲۵</td>
<td>۱۱/۸</td>
<td>جویچه میک گیره که در میان ناب‌آمد</td>
<td>۲۰</td>
</tr>
</tbody>
</table>

جدول ۳- پارامترهای اندازه‌گیری شده برای هر یک از تجارب‌های تحت ازمایش

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>روش اندازه‌گیری</th>
<th>تعداد دفعات نمونه‌گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>مایع خاک</td>
<td>انتقال گرمایی</td>
<td>USDA</td>
</tr>
<tr>
<td>چگالی ظاهری خاک</td>
<td>هندسه منطقه جویچه</td>
<td></td>
</tr>
<tr>
<td>هر آزیبی</td>
<td>نمودار احتمال</td>
<td></td>
</tr>
<tr>
<td>روش گرمایش</td>
<td>WSC</td>
<td></td>
</tr>
<tr>
<td>هر آزیبی</td>
<td>نمودار احتمال</td>
<td></td>
</tr>
<tr>
<td>زمان برترمان</td>
<td>WSC</td>
<td></td>
</tr>
<tr>
<td>دو نقطه الیوت و یک گذار</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نمودار احتمال</td>
<td></td>
<td></td>
</tr>
<tr>
<td>هر آزیبی</td>
<td>نمودار احتمال</td>
<td></td>
</tr>
<tr>
<td>سرعت نقطه نهایی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>هر آزیبی</td>
<td>نمودار احتمال</td>
<td></td>
</tr>
<tr>
<td>شیب طولی و طول جویچه</td>
<td></td>
<td></td>
</tr>
<tr>
<td>هر آزیبی</td>
<td>نمودار احتمال</td>
<td></td>
</tr>
<tr>
<td>نمودار احتمال</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۴- پارامترهای معمولی نفوذ کوستیکاف-لوپس به روش دو نقطه‌ای و بر اساس وردی-خروجی

<table>
<thead>
<tr>
<th>a (mm min⁻¹)</th>
<th>k (mm min⁻¹)</th>
<th>f₀ (mm min⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۰/۰۹</td>
<td>۰/۱۲۰۲</td>
<td>۰/۱۲۱۶</td>
</tr>
<tr>
<td>۳/۷۳۳</td>
<td>۰/۱۲۳۴</td>
<td>۰/۱۲۳۴</td>
</tr>
<tr>
<td>۰/۱۲۴۶</td>
<td>۰/۱۲۴۶</td>
<td>۰/۱۲۴۶</td>
</tr>
<tr>
<td>۰/۱۲۵۶</td>
<td>۰/۱۲۵۶</td>
<td>۰/۱۲۵۶</td>
</tr>
<tr>
<td>۰/۹۷۲۳</td>
<td>۰/۹۷۲۳</td>
<td>۰/۹۷۲۳</td>
</tr>
<tr>
<td>۰/۹۷۴۶</td>
<td>۰/۹۷۴۶</td>
<td>۰/۹۷۴۶</td>
</tr>
<tr>
<td>۰/۹۷۶۸</td>
<td>۰/۹۷۶۸</td>
<td>۰/۹۷۶۸</td>
</tr>
</tbody>
</table>

باشد، برآورد بیش از اندازه‌گیری‌ها یا خواهد بود. مقدار خطای مطلق برآورد را نیز می‌توان از رابطه زیر محاسبه کرد:

\[AE = \frac{X_p - \lambda X_m}{X_m} \times 100\]

که در آن \(X_p\) مقادیر مزرعه‌ای اندازه‌گیری شده، \(X_m\) مقادیر برآورد شده توسط مدل و \(\lambda\) شیب پهن‌ترین خط عبوری می‌باشد، اگر \(\lambda\) بیشتر از یک کمتر از

\[X_p = \lambda X_m\]

در آن \(\lambda\) مقادیر مزرعه‌ای اندازه‌گیری شده، \(X_m\) مقادیر برآورد شده توسط مدل و \(\lambda\) شیب پهن‌ترین خط عبوری می‌باشد، اگر \(\lambda\) بیشتر از یک

\[AE = \frac{X_p - \lambda X_m}{X_m} \times 100\]
توسط دو مدل KW و ZI برای هر سر روش آبنویس و در نویشهای مختلف در 1 اثر گردیده است. در مثابه این شکل مقادیر پیش‌ریزی انتخابی و برآورد رشد به صورت جهت‌دار و بالا بر استفاده همبستگی برای تام‌دار استخراج شده است. نتایج نشان داد که برای هر مدل روابطی فراتر از نسبت به ZI برآورد مدل KW برای 0.25 و برای مدل ZI را برآورد مدل KW و دقت در این بخش برآورد داده که نشان دهنده این که برآورد مدل که نشان ده
تحلیل حساسیت و ارزیابی عملکرد مدل
مدادر ضرب حساسیت (S_i) پارامترهای ورودی مدل بر روی پارامترهای خروجی یکنواخت توزیع بازه کاربرد، مقدار روانات، کفایت آبیاری و زمان پیشروی، در جدول ۵ ارائه شده است. بیشترین تأثیر روی باردار مربوط به دومین ورودی (S_i) حساسیت ۹۹% و زمان قطع جریان با حساسیت ۹۴% می‌باشد. نتایج نشان می‌دهد که از بین پارامترهای مدل خود کوستیاک-لویس، بیشترین حساسیت مربوط به سرعت نفوذ نهایی می‌باشد. بیشترین تأثیر سرعت نفوذ به روش محاسبه کروشی دارای شده در جدول ۵/۴۱ می‌باشد.

براساس تحلیل حساسیت ضریب مانگن، این ضریب به غیر از زمان پیشروی، تأثیر ناشی از دستگاه مدل خروجی دارد. شاخص‌های ارزیابی عملکرد برای شرایط آزمایش این تحقیق، در جدول ۶ آرائه شده است. این اندازه‌گیری وضع موجود می‌باشد.

در شرایط موجود با داده کاربرد آب بین ۵/۰۰ و ۷/۳ درصد مربوط به وابستگی یکسانی این جدول می‌باشد. عملکرد بیشتر ارزیابی در زمانی خوب می‌باشد که نمایش داده شده (ربات حساسیت بالایی از یکنواختی و بازده کاربرد بیشتری) باید در محله مکانیکی به منظور رسیدن به یک طرح مناسب، مبتنی بر عملکرد سیستم تأثیر دارند. ولی در سیستم‌های آبیاری در حال پیشرفت مبتنی تأثیر دارا با زمان قطع جریان و دیگر متغیرهای محور داده شد. در این شرایط مبتنی، بهترین عملکرد به عوامل افزایش مناسب پیش‌بینی عملکرد سیستم بی‌بی‌سی محسوب می‌شود.

منحنی‌های عملکرد و تحلیل آنها

منحنی‌های عملکرد بیانگر معادله (q) و زمان قطع جریان (t) استفاده می‌شود. منحنی‌های عملکرد که به وسیله تحقیق عملی‌های مدل ایجاد می‌شود، ابعاد از ارتباط (RO، کوانتِ اکو، حداکثر (D_(min، کاربرد (AE)، بروز حادثه (D_(p، و نفوذ (D_(pp، این تاثیب با درون‌بایری از تابع شیپورسی مدل در شکل‌های مستطیل شکل از نقاط و در یک فضای امکان پذیر از مدل (q) ایجاد می‌شود.

تحلیل منحنی‌های عملکرد مربوط به بازه کاربرد و رواناب برای سیستم آبیاری کوستیاک-لویس تعداد پیش‌بینی و آبیاری هستم برای شد در شکل ۶ منحنی‌های عملکرد بازه کاربرد این تیمار به همراه داده شده است.

شکل ۱- مقایسه و رابطه بین مقادیر پیش‌بینی سیستم آبیاری و پراورده شده با مدل اینترنتی- صفر

شکل ۲- مقایسه و رابطه بین مقادیر پیش‌بینی سیستم آبیاری و پراورده شده با مدل اینترنتی- صفر

شکل ۳- مقایسه و رابطه بین مقادیر نفوذ اندام‌گیری و پراورده شده با مدل اینترنتی- صفر
جدول 5- ضرایب حساسیت (β) برخی از پارامترهای ورودی مدل بر روی پارامترهای خروجی

<table>
<thead>
<tr>
<th>پارامتر خروجی</th>
<th>متوسط حساسیت</th>
<th>RO</th>
<th>TL</th>
<th>AE</th>
<th>ADmin</th>
<th>Dreq</th>
<th>1/99</th>
</tr>
</thead>
<tbody>
<tr>
<td>زمان قطع جریان (tco)</td>
<td>(A)</td>
<td>0/21</td>
<td>0/21</td>
<td>0/21</td>
<td>0/21</td>
<td>0/21</td>
<td>0/21</td>
</tr>
<tr>
<td>توان معادله نفوذ (K)</td>
<td>0/41</td>
<td>0/41</td>
<td>0/41</td>
<td>0/41</td>
<td>0/41</td>
<td>0/41</td>
<td>0/41</td>
</tr>
<tr>
<td>ضریب معادله نفوذ (f0)</td>
<td>0/34</td>
<td>0/34</td>
<td>0/34</td>
<td>0/34</td>
<td>0/34</td>
<td>0/34</td>
<td>0/34</td>
</tr>
<tr>
<td>شبیه جوییه (S)</td>
<td>0/02</td>
<td>0/02</td>
<td>0/02</td>
<td>0/02</td>
<td>0/02</td>
<td>0/02</td>
<td>0/02</td>
</tr>
<tr>
<td>ضریب مانیجز (n)</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
</tr>
<tr>
<td>گچچه معمولی</td>
<td>0/04</td>
<td>0/04</td>
<td>0/04</td>
<td>0/04</td>
<td>0/04</td>
<td>0/04</td>
<td>0/04</td>
</tr>
<tr>
<td>چهارم</td>
<td>0/03</td>
<td>0/03</td>
<td>0/03</td>
<td>0/03</td>
<td>0/03</td>
<td>0/03</td>
<td>0/03</td>
</tr>
<tr>
<td>یک در میان متغیر</td>
<td>0/02</td>
<td>0/02</td>
<td>0/02</td>
<td>0/02</td>
<td>0/02</td>
<td>0/02</td>
<td>0/02</td>
</tr>
<tr>
<td>جویچه معمولی</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
</tr>
<tr>
<td>یک در میان</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
</tr>
<tr>
<td>هشت</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
</tr>
<tr>
<td>یک در میان متغیر</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
</tr>
<tr>
<td>چهارم</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
</tr>
<tr>
<td>دوزدهم</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
</tr>
<tr>
<td>یک در میان متغیر</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
</tr>
</tbody>
</table>

D_{min} < D_{req} است. سمت چپ و باین خط چین

روش آماری یک جایی که جوییچه دچار کمی می‌شود. به دخالت می‌رسد و با

افزایش q و tco به‌کار می‌آید. در این شکل، خطرهای جوییه. به دنبال ساختار و شرایط موجود عمق مورد نیاز

برای داشتن هر این سرطان، لازم است که ترکیباتی از دبی و زمان

قطع جریان انتخاب گردید که بر روی خط چین قرار گرفته باشد. در

حال کلی یک ترکیب مطلوب D_{req} با ترکیب این q-a و tco است که باید کاربرد و

یکنوئیتی توزیع را به دخالت می‌رساند. یک گزینه در این شرایط این

شرایط حاکم شدن مجموع Q_{req} = D_{min} است که بر روی خط مانند

بازده کاربرد و یکنوئیتی توزیع را به دعوت می‌رساند. یک گزینه

شاینگری دیگر در نظر گرفته یک ترکیب حاکم برای یکنوئیتی توزیع

روش آماری (جریان) که به یک نظر خواهند شد که

بازده کاربرد و یکنوئیتی تشکیل داده نشده باشد. شاید این

ضرایب حساسیت (β) برخی از پارامترهای ورودی مدل بر روی پارامترهای خروجی WinSRFR

جدول 1- شاخص‌های ارزیابی عملکرد سیستم‌های جویوی و پشت‌نشین در شرایط آزمایش‌های مزرعه‌ای (بر حسب دصرد)
نتیجه گیری

در این تحقیق عملکرد سیستم آبیاری چوپجه‌ای توسط مدل آبیاری سطحی WinSRFR مورد تحلیل و بررسی قرار گرفت. نتایج نشان داد که این مدل می‌تواند زمان پیشرفت، مقادیر روانب و نفوذ را در سه روش آبیاری چوپجه‌ای معمولی، یک در میان تابث و یک در میان منتظر را با دقت مناسب و به ترتیب با حداکثر خطای مطلق 1/5 و 5 درصد پیش بینی می‌نماید. تحلیل حساسیت نشان داد که پیشترین جنبه مدل نسبت به دبی ورودی، زمان قطع جریان و پارامترهای معادله تقسیم می‌باشد. نتایج این تحقیق نشان داد که بهترین عملکرد داشته است که بالاترین سطحی‌های فوق با دقت بالا قابل پیش‌بینی است. در نهایت، سیستم آبیاری چوپجه‌ای در حال بهره‌برداری و با استفاده از معنی‌های همین نتایج، عملکرد سیستم را تا حد قابل ملاحظه‌ای افزایش داد. منحنی‌های هم عملکرد سیستم که در میان تابث تحت تابع هدف باربری، نشان داد که با مدیریت زمان قطع جریان و دبی ورودی، باربری کاربرد را می‌توان به شرط اطمینان عمق مورد نیاز از 75 درصد در شرایط جاری به 3 درصد افزایش داد. یکی از مدل‌های اصلی، ترکیب همزمان، ترکیب است که به‌طور همزمان به حداکثر باربری و پیک‌نشین توزیع منجر گردید که به دست‌یابی به این ترکیب مطلوب دبی ورودی زمان قطع جریان، لازم است که منحنی‌های هم عملکرد باربری و پیک‌نشین توزیع ترکیب‌گردد. برای سیستم یک در میان تابث، ترکیب مطلوب تحت دبی 37/5 یک در تابث و زمان قطع جریان 238 دقیقه می‌باشد. که منجر به باربری کاربرد 88 درصد و پیک‌نشین توزیع 95 درصد - گردید. با توجه به بالاترین سطحی مدل WinSRFR، مدل روش‌های مختلف آبیاری، تحلیل حساسیت پارامترهای ورودی و باربری منحنی‌های هم تر از باربری و پیک‌نشین این مدل برای طراحی و مدیریت سیستم‌های آبیاری سطحی توصیه می‌گردد.

شکل 4

شکل 4 - منحنی‌های هم تر از باربری و پیک‌نشین به عنوان تابعی از دبی و زمان قطع جریان برای سیستم‌های آبیاری چوپجه‌ای. نقاط در میان تابث و آبیاری هشتم (بر حسب درصد).

شکل 5

شکل 5 - منحنی‌های هم تر از باربری و پیک‌نشین به عنوان تابعی از دبی و زمان قطع جریان برای سیستم‌های آبیاری چوپجه‌ای. نقاط در میان تابث و آبیاری هشتم (بر حسب درصد).

Field Evaluation and Analysis of Surface Irrigation System with WinSRFR (Case Study Furrow Irrigation)

Z. Taghizadeh¹- V.R. Verdinejad²*- H. Ebrahimian³- N. Khanmohammadi⁴

Received: 11-3-2012
Accepted: 23-9-2012

Abstract

The low irrigation application efficiency is the major problem of surface irrigation systems due to weak management and poor design. In this research, in order to analyze the performance of furrow irrigation system, a field experiment was conducted during maize growing season. Three furrow irrigation methods; conventional furrow irrigation, fixed alternate furrow irrigation and variable alternate furrow irrigation were considered to collect field data and, then, to evaluate the performance of WinSRFR (surface irrigation model). This model was calibrated and evaluated based on the experimental data with Zero-Inertia (ZI) and Kinematic Wave (KW) solutions. The sensitivity analysis of WinSRFR showed that the most sensitive parameters were inflow rate, cutoff time and parameters of the infiltration equation, respectively. There was a small difference between ZI and KW to estimate advance time, runoff and infiltration due to high field slope. The minimum absolute error for estimation of advance times was obtained about 1.5% (0.8 minute). The minimum absolute error in estimating runoff and infiltration were 5.7 and 5.0%, respectively. Using operations analysis of WinSRFR, the iso-performance contour plots of furrow irrigation system was obtained to optimize cutoff time and inflow rate under maximizing of application efficiency and distribution uniformity and minimizing of runoff and deep percolation. Application efficiency iso-performance contour plot of fixed alternate furrow irrigation, indicated by managing of cutoff time and inflow rate, application efficiency could be increasing from 54.5% in current evaluation to 74%, provided water supply of Dreq. Also based on this contour plot, increasing of application efficiency more than 74% was impossible provided water supply of Dreq, under current furrow geometry parameters and it was possible with changing furrow geometry parameters.

Keywords: Furrow Irrigation, Performance Evaluation, Surface Irrigation Model

¹,²,⁴- MSc Student, Assistant Professor and MSc Student, Department of Water Engineering, Faculty of Agriculture, Urmia University, Respectively
*Corresponding Author Email: verdinejad@gmail.com
³- Assistant Professor, Department of Irrigation and Reclamation Engineering, Faculty of Agriculture and Natural Resources, University of Tehran