A NEW IRANIAN SPECIES OF THE SUBGENUS LABIDOSTOMA (PROSTIGMATA: LABIDOSTOMATIDAE), WITH NEW BIOGEOGRAPHIC DATA ON THE INTEGRUM SPECIES GROUP

Michel BERTRAND1*, Mohammad BAGHERI2, Ali AKBARI3, Mohsen YAZDANIAN4, Karim Haddad IRANI-NEJAD3, Shiela Shirinbeik MOHAJER3 and Alireza SABOORT5

(Received 06 December 2011; accepted 06 April 2012; published online 27 September 2012)

1 UMR 5175 CNRS CEFE Université Montpellier III, Route de Mende, F-34199 Montpellier Cedex5, France. (* corresponding author) michel.bertrand@univ-montp3.fr
2 Department of Plant Protection, Faculty of Agriculture, University of Maragheh, Maragheh, Iran. mbagheri20022002@yahoo.com
3 Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran. aliakbari29@yahoo.com
4 Department of Plant Protection, Faculty of Plant Protection, Gorgan University of Agricultural Sciences and Natural Resources Iran. mohsenyazdanian@gau.ac.ir, sh_shirinbeikmohajer@yahoo.com
5 Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran. saboori@ut.ac.ir

ABSTRACT — A new species, Labidostoma (Labidostoma) intermedia, from Iran and clearly allied to L. (L.) integrum, is described and compared with specimens of the latter from various locations. Because L. (L.) intermedia n. sp. is closely allied to the common Mediterranean species, the authors propose to consider the eponymous species group as a group gathering species which share the lateral line of pores. These species are likely vicariants in a West to East gradient from the Atlantic Ocean to Asian countries. We provide a general key setting the new species group back among the genera and subgenera previously described, as well as biogeographical and taxonomic notes.

KEYWORDS — Labidostomatoidea; integrum-group of species; vicariants; Iran; Mediterranean Region; biogeography; identification key

INTRODUCTION

It is common to consider that Arachnids are an old group and that mites have passed through different changes on the earth since the Primary Era. However, speciation is a continuum occurring throughout different episodes. Vicariance is the result of speciation when a pre-existing species is subdivided and when the newly born species has kept the principal features that gave a similar role for each species in each area of distribution. Among many authors, Boyer et al., (2007) confirmed the hypothesis that continental drift drives the diversification of organisms through vicariance, following a thorough study of a group of Opiliones. As suggested by Krantz and Walter (2009), groups of mites have also likely undergone vicariant speciation and may provide much interesting models for testing biogeographical hypotheses. It is obvious that vicariance at the generic level may suppose a more ancient separation than those at the infrageneric level that are often interpreted in Europe and America as re-
resulting from changes in the late billions of years (from Tertiary to Glaciations). Labidostomids as not only primitive, but also widely distributed mites, are indeed a case in point with regard to vicariant speciations. Within the *Labidostoma* (*Labidostoma*) subgenus, and based upon available biogeographic data, we discuss how passed conditions may be linked with speciation patterns, radiation resulting from the fragmentation of the wider primitive distribution of one unidentified common ancestor.

The *Labidostomatidae* family, a model of primitive Prostigmata

The three European genera of Labidostomatoidea (Trombidiformes, supercohort Labidostomatidae sensu Krantz and Walter, 2009) have a large distribution (Europe, North America and Asia): the cosmopolitan *Labidostoma* Kramer, 1879 (syn. *Nicoletiella*), or the Holarctic genera *Eunicolina* Berlese, 1911 (syn. *Grandjeanellina*) and *Akrostomma* Robaux, 1977 (Table 1).

Because Labidostomatidae Oudemans 1904 (i) have conserved a primitive morphology, (ii) are distributed all over the continents, and (iii) the distinctive variations in their morphology are easily observable, labidostomatid mites are currently considered forming (i) a basal branch among the Prostigmata, (ii) a model for biogeographic studies, (iii) a likely example of evolutive radiations (Grandjean, 1941; Bertrand, 1990a).

Labidostomatidae is the unique family that belongs to Labidostomatina, one of four infraorders forming the suborder Prostigmata (classification according to Zhang et al., 2011). Labidostomatidae are one of the most primitive groups of Actinotrichid mites. An unusual and homogeneous pattern, with sclerotized cuticle forming ventral and dorsal shields characterized the species; this sclerotization may have played a role in the conservation of characters kept also by the most primitive groups of trombidiform mites (Sphaerolichina, Eupodina).

The genus *Labidostoma* and the subgenus *Labidostoma* (*Labidostoma*)

Berlese (1911) described the species type *Labidostoma integrum* from Umbria (Italy) in a brief diagnosis (less than 40 words):

"Flavidum, ovale; angulis non in cornua productis; mandibulorum digito mobili dentibus (in medio margine dentario) numero novem, intersese statura subequalibus,

<table>
<thead>
<tr>
<th>Genera</th>
<th>Subgenera</th>
<th>Known distribution</th>
<th>Notable characters</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eunicolina Berlese, 1911</td>
<td>Northern Hemisphere</td>
<td>Neotaxy (gland like organs)</td>
<td>Included</td>
<td>Grandjeanellina Feider & Vasiliu 1969, 1970; Eunicolinae according to F & V.</td>
</tr>
<tr>
<td>Akrostomma Robaux, 1977</td>
<td>Northern Hemisphere</td>
<td>Euedaphic genus. Primitive famulus, developed gland like organ</td>
<td>Considered as the subfamily Nicoletiellinae by F & V.</td>
<td></td>
</tr>
<tr>
<td>Labidostoma Kramer, 1879</td>
<td>Southern Hemisphere</td>
<td>absence of cornua, spine-like famulus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicoletiella Cosmopolitan</td>
<td>presence of cornua, primitive famulus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cornutella</td>
<td>Holartic (Malvini = East Asian)</td>
<td>Famulus primitive, prolonged bases of proximal cheliceral setae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malviniella</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pociella</td>
<td>South America. (A unique species described)</td>
<td>proroged anteriorly dorsal shield</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sellnickiella Feider & Vasiliu 1970</td>
<td>South Hemisphere</td>
<td>no gland like organ, simple or bifid famulus (Sellnickiella or Dicatriella)</td>
<td>Considered as a subfamily by F & V: Sellnickiellinae</td>
<td></td>
</tr>
</tbody>
</table>
Berlese did not provide any details concerning the exceptional characteristic of this species: the line of dorso-lateral pores that distorts the alveolar arrangement. Fortunately, Grandjean (1942, a, b) examined some specimens and provided illustrations. He noted that Algerian and French specimens differed by:

- ornamentation of the dorsal shield,
- the number of teeth on the mobile cheliceral digit,
- the organization of the terminal and subterminal teeth of the fixed digit.

Feider and Vasiliu (1970) compared the morphology of Romanian specimens of *L. caucasicum* (Reck 1940) and *L. integrum* to clarify their identity. Until now, amongst the species belonging to the subgenus *Labidostoma*, only two shared the unusual arrangement of a dorso-lateral line of pores: i.e. *integrum* and *caucasicum*.

From 1879 to 1969, several authors described newly discovered species, named them in the genus *Labidostoma* (syn. *Nicoletiella* Kramer 1879). However, providing a different perspective from previous authors, Feider and Vasiliu (1969) and some years later, Bertrand (1990) considered that it is preferable to subdivide the genus into different subgenera. The subgenus *Labidostoma*, (comprising the species closely allied to *L. integrum*) and the subgenus *Nicoletiella*, (comprising the species closely allied to *L. luteum*) must keep separated from each other at least as subgenera if not as different genera.

The *integrum* species-group : new insights thanks to a new species

The successive descriptions in the genus *Labidostoma* filled it gradually with species that could not be assigned to any other labidostomid genus (*Eu

From 1879 to 1969, several authors described newly discovered species, named them in the genus *Labidostoma* (syn. *Nicoletiella* Kramer 1879). However, providing a different perspective from previous authors, Feider and Vasiliu (1969) and some years later, Bertrand (1990) considered that it is preferable to subdivide the genus into different subgenera. The subgenus *Labidostoma*, (comprising the species closely allied to *L. integrum*) and the subgenus *Nicoletiella*, (comprising the species closely allied to *L. luteum*) must keep separated from each other at least as subgenera if not as different genera.

The *integrum* species-group : new insights thanks to a new species

The successive descriptions in the genus *Labidostoma* filled it gradually with species that could not be assigned to any other labidostomid genus (*Eu

From 1879 to 1969, several authors described newly discovered species, named them in the genus *Labidostoma* (syn. *Nicoletiella* Kramer 1879). However, providing a different perspective from previous authors, Feider and Vasiliu (1969) and some years later, Bertrand (1990) considered that it is preferable to subdivide the genus into different subgenera. The subgenus *Labidostoma*, (comprising the species closely allied to *L. integrum*) and the subgenus *Nicoletiella*, (comprising the species closely allied to *L. luteum*) must keep separated from each other at least as subgenera if not as different genera.

The *integrum* species-group : new insights thanks to a new species

The successive descriptions in the genus *Labidos

From 1879 to 1969, several authors described newly discovered species, named them in the genus *Labidostoma* (syn. *Nicoletiella* Kramer 1879). However, providing a different perspective from previous authors, Feider and Vasiliu (1969) and some years later, Bertrand (1990) considered that it is preferable to subdivide the genus into different subgenera. The subgenus *Labidostoma*, (comprising the species closely allied to *L. integrum*) and the subgenus *Nicoletiella*, (comprising the species closely allied to *L. luteum*) must keep separated from each other at least as subgenera if not as different genera.

The *integrum* species-group : new insights thanks to a new species

The successive descriptions in the genus *Labidostoma* filled it gradually with species that could not be assigned to any other labidostomid genus (*Eu

From 1879 to 1969, several authors described newly discovered species, named them in the genus *Labidostoma* (syn. *Nicoletiella* Kramer 1879). However, providing a different perspective from previous authors, Feider and Vasiliu (1969) and some years later, Bertrand (1990) considered that it is preferable to subdivide the genus into different subgenera. The subgenus *Labidostoma*, (comprising the species closely allied to *L. integrum*) and the subgenus *Nicoletiella*, (comprising the species closely allied to *L. luteum*) must keep separated from each other at least as subgenera if not as different genera.

The *integrum* species-group : new insights thanks to a new species

The successive descriptions in the genus *Labidos

From 1879 to 1969, several authors described newly discovered species, named them in the genus *Labidostoma* (syn. *Nicoletiella* Kramer 1879). However, providing a different perspective from previous authors, Feider and Vasiliu (1969) and some years later, Bertrand (1990) considered that it is preferable to subdivide the genus into different subgenera. The subgenus *Labidostoma*, (comprising the species closely allied to *L. integrum*) and the subgenus *Nicoletiella*, (comprising the species closely allied to *L. luteum*) must keep separated from each other at least as subgenera if not as different genera.

The *integrum* species-group : new insights thanks to a new species

The successive descriptions in the genus *Labidos

From 1879 to 1969, several authors described newly discovered species, named them in the genus *Labidostoma* (syn. *Nicoletiella* Kramer 1879). However, providing a different perspective from previous authors, Feider and Vasiliu (1969) and some years later, Bertrand (1990) considered that it is preferable to subdivide the genus into different subgenera. The subgenus *Labidostoma*, (comprising the species closely allied to *L. integrum*) and the subgenus *Nicoletiella*, (comprising the species closely allied to *L. luteum*) must keep separated from each other at least as subgenera if not as different genera.

The *integrum* species-group : new insights thanks to a new species

The successive descriptions in the genus *Labidos

From 1879 to 1969, several authors described newly discovered species, named them in the genus *Labidostoma* (syn. *Nicoletiella* Kramer 1879). However, providing a different perspective from previous authors, Feider and Vasiliu (1969) and some years later, Bertrand (1990) considered that it is preferable to subdivide the genus into different subgenera. The subgenus *Labidostoma*, (comprising the species closely allied to *L. integrum*) and the subgenus *Nicoletiella*, (comprising the species closely allied to *L. luteum*) must keep separated from each other at least as subgenera if not as different genera.

The *integrum* species-group : new insights thanks to a new species

The successive descriptions in the genus *Labidos

From 1879 to 1969, several authors described newly discovered species, named them in the genus *Labidostoma* (syn. *Nicoletiella* Kramer 1879). However, providing a different perspective from previous authors, Feider and Vasiliu (1969) and some years later, Bertrand (1990) considered that it is preferable to subdivide the genus into different subgenera. The subgenus *Labidostoma*, (comprising the species closely allied to *L. integrum*) and the subgenus *Nicoletiella*, (comprising the species closely allied to *L. luteum*) must keep separated from each other at least as subgenera if not as different genera.

The *integrum* species-group : new insights thanks to a new species

The successive descriptions in the genus *Labidos
FIGURE 1: *Labidostoma (Labidostoma) intermedia* n. sp., female: A – dorsal shield; B – epimera (p: epimeral and post epimeral pores; C-D – dorsal trichobotria; E – detail of dorso-lateral line of pores.
FIGURE 2: Labidostoma (Labidostoma) intermedia n. sp.: A – infracapitulum and palp ventral view; B – infracapitulum dorsal view, detail (c.p.c.: podocephalic canal, P: pore, CD: dorsal rail (“carène dorsal” in Grandjean 1942); C-D – anogenital region of male (C) and female (D).

Specimens in MB collection collected between Montpellier and Banyuls-sur-Mer.

2. Asian specimens: two specimens from Kazakhstan provided by Prof. André Yabretsov (Kiev) 1991 (MB collection).

RESULTS

Labidostoma (Labidostoma) intermedia n. sp.

Types: Holotype ♀, MNHN-Ac1152, Iran, Golestan Province, Gorgan (36°50’N, 54°30’E), Berlese extraction of soil, 1.03.2011. Allotype ♂, MNHN-Ac1153, Iran, Golestan Province, Gorgan (36°50’N, 54°30’E), Berlese extraction of soil. A reference collection is kept at the Zoology Museum of Tehran University (three females).

Dorsal shield — (Figures 1A, 1C, 1D and 1E) Body elongated, covered by a reticular pattern even in the central zone. As in many species the polygons become less regular and less distinct and increasingly granulate dorsally as well as in the posterior part. Two pairs of long trichobothria; bop longest. Aspidosomal setae: ge > qa = gr < gm, all simple. Usual paired dorsal and lateral setae, all simple, posterior setae (dd, de, and le) longest. Dorsal pores visible around bop and grouped in area posteriad to setae gm and latero-posterior to db. Anterior eye present, 23 µm in diameter, in subterminal position. One pair of large lateral pustules (diameter 34 µm) each close to the small lateral eyes. Lateral lyriform organ present, extending over three to five cuticular cells. The pustule cuts the lateral line of pores that are connected by a sclerotized “ridge” (figures 3A and 3B). The posterior part of this ridge (arête of Grandjean, op. cit.) follows the margin on the dorsal shield backward and continues from the right pustule to the symmetric pustule. From the oculopustular zone, the anterior branches are inclined toward the axis of the body and are long enough to
reach the aspidosomal setae ge. In some individuals the anterior ridge ends below the lateral ocular lenses, the posterior branch ends at the level of the pustule and sometimes tends to curve below this organ (figure 3B).

Figure 3: *Labidostoma (Labidostoma) intermedia* n. sp.: A-B – oculo-pustular zone; C-D – chelicera, lateral view and detail of terminal teeth of fixed digit (ventral view).

Ventral shield — (figure 1B) Entirely covered by ornamentation. Epimeral setae short ((18-24)-(14)-(9)-(12)). Usual coxal pore on epimera I. Fourteen pores on cuticle behind the fourth epimeral plate and a transverse line of eight setae (the number of pores differs between *integrum* and *caucasicum* with 10 and 12 pores respectively). Anogenital ring surrounding anal and genital shields in the female, distinct genital and anal rings in the male (figures 2C and 2D).

Figure 4: *Labidostoma integrum* from Kazakhstan: A – Chelicera antiaxial view; B – infracapitulum, ventral view.

Figure 5: *Labidostoma intermedia* n. sp.: A – Tarsus I, external; B – paraxial view.
Infracapitulum — The labrum (dorsal lip) is shorter than the lateral lips, which are rather large, each with a minute seta. Setae ma and mb, plus two additional setae near insertion of the palp. Palps with usual chaetotaxy, dorsal solenidion. The presence of additional setae was noted on Grandjean’s drawings for $integrum$; Feider and Vasiliu recorded two setae in Romanian specimens of $L. integrum$, whereas they have drawn three setae in $caucasicum$.

Such additional setae are absent on Kazakhstani specimens of $integrum$ (fig. 5B).

Chelicerae — (figures 3C and 3D) The chelicerae differ essentially from those of the other species of the group by the shape of the paraxial tooth, which is less developed and not smooth. It differs clearly from the French (figure 6A), Algerian (figures 6B and 6C), Romanian (figure 6E) and Kazakhstani (figure 5A) specimens of $L. integrum$ and
from *L. caucasicum* (figure 6D) by the teeth and denticles of the mobile digit. Note that the chelicerae of French specimens of *L. integrum* show an inferior tooth very similar to the drawings of Feider and Vasiliu (1970), but differ from the *integrum*’s chelicerae drawn by Grandjean (Figures 6A-6D). It may be supposed that Grandjean chose North African specimens because they were of a bigger size than French ones (Grandjean, 1942b).

Legs — Among the species-group, the first pair of legs is remarkable for its lengthened tibia, genu and mesofemur. *L. intermedia* n. sp. exhibits a relatively short genu, subequal in length to the mesofemur, the tibia being the longest article (ratio genual/tibia = 0.7 vs. 0.8 in *L. integrum*) (Table 2). Simple setae on leg I. Tarsi of PIII, PIV with sub-terminal ventral setae plumose (= "scobales" sensu Feider and Vasiliu), other setae simple. Tarsus I with usual solenidia ω1 and ω2, and spine-like famulus, tarsal eupathidia present.

DISCUSSION

Validation of the new species. *Labidostoma (Labidostoma) intermedia* n. sp. is a new species because of four main differences, from previously described species, in terms of cheliceral morphology, the length of leg I articles, the number of post epimeral pores and the characters of the infracapitulum. Nevertheless, there is no doubt that the three species *L. (L.) integrum*, *L. (L.) caucasicum* and *L. (L.) intermedia* are closely related: they are the only three sharing the same features in the latero-dorsal line of pores. The distribution of this subgenus is, as far we know, limited, confined to subtropical and Eurasian areas.

The future of the subgenus *Labidostoma* and the "integrum group of species". To consider the above three species as composing a species-group appeared justified. The individualized lateral line of pores makes this item of three species clearly recognizable. The congeneric species are consequently clearly excluded from this group of species: we cannot include, because of insufficient information, some species that were never examined on a lateral view (e.g. the African *Labidostoma schoutedeni* Cooreman, 1955 and *L. hoegi* Thor, 1931) nor, because they are not conform, some more recently described ones (e.g. Austral African species described by Bertrand and Theron, 1990).

Following a case-by-case careful approach, we hereby suggest that the *integrum* species group be recognized as including *L. (L.) integrum*, *L. (L.) intermedia* and *L. (L.) caucasicum* within *Labidostoma (Labidostoma)*. The appropriateness of considering a higher-level must be kept in mind, if necessary.

The distribution of the three species *L. intermedia*, *L. integrum* and *L. caucasicum:** Notwithstanding gaps in our current knowledge, the information available allows us to outline the main distribution patterns: this group of species exists from the Atlantic.

<table>
<thead>
<tr>
<th></th>
<th>PI</th>
<th>PII</th>
<th>PIII</th>
<th>PIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarsus</td>
<td>70</td>
<td>100</td>
<td>98</td>
<td>110</td>
</tr>
<tr>
<td>Tibia</td>
<td>145</td>
<td>31%</td>
<td>70</td>
<td>64</td>
</tr>
<tr>
<td>Genual</td>
<td>106</td>
<td>22%</td>
<td>45</td>
<td>36</td>
</tr>
<tr>
<td>Telofemur</td>
<td>41</td>
<td>87</td>
<td>65</td>
<td>91</td>
</tr>
<tr>
<td>Mesofemur</td>
<td>103</td>
<td>35</td>
<td>24</td>
<td>44</td>
</tr>
<tr>
<td>Total</td>
<td>465</td>
<td>75%</td>
<td>337</td>
<td>287</td>
</tr>
</tbody>
</table>

Table 2: *L. intermedia* n. sp. Length of leg articles (4 individuals) and contribution of tibia, genu and mesofemur to the total length of PI (2nd column).
shores to Asia. *L. integrum* is widely distributed (from North Africa, Mediterranean to Asian countries), *L. caucasicum* is limited between Caucasus and Eastern Mediterranean ridges, and the new species is Iranian (as far as we know). An analogous West to East distribution of related species is not exceptional and has already been observed. Among Labidostomatids, two examples are known: the “sister” species of *L. cornutum* (Canestrini & Fanzago, 1877): *L. carpathica* Storkan, 1939 (see Bloszyk, 1980), and *L. corsicum* Bertrand, 1982; and the similar pattern of distribution observed among the three European species of *Eunicolina* that are distributed from East to West along the Mediterranean Basin in the sequence *E. nova* Sellnick, 1931, *E. tuberculata* Berlese, 1911 and *E. travei* Coineau, 1964. Among the Anystidae, Coineau (1969) showed that vicariants were present among the Mediterranean Caeculidae. Thus, the *integrum* group adheres to a biogeographical pattern that was recurrently noticed in other more or less closely related mite groups and is consistent with vicariant radiation. These few examples pledge for continued studies in biogeographic distribution of edaphic organisms (Valdecasas *et al*., 2006), notably on the interest of the early differentiated taxa, and of the integrated analysis of their distribution, that attests the resistance of these lineages to the more recent changes in environmental conditions during Tertiary and Quaternary Eras.

ACKNOWLEDGEMENTS

We cordially express thanks to Mark Judson (MNHN Paris) for help provided in the final write-up of this article and correcting the English language, and to Lise Roy for attentive reading...

Key to genera and subgenera with notes on the Labidostomatidae

A1.	Multiple pustules on the body, each being uniporous; body heavily sclerotized, the leg segments with polygons, a hollow posterior to coxae IV with villose ornamentation, chelicerae often with sub terminal tooth prolonged in a curved blade, collected from litter and upper layers of soils in Europe and North America	Genus *Eunicolina* a.
A2.	Very large lateral pustules. From Southern Hemisphere	
A3.	No lateral pustule. Usually, variations in the composite ornamentation of the dorsum, soft cuticle between alveolate and more sclerotized zones, Southern Hemisphere.	Genus *Sellnickiella* c.
A4.	Not as above, if multiple gland like organs exist, they are less developed, and are limited in mediolateral position on the dorsal shield close to the lateral lenses, and/or in posterolateral position	Genus *Labidostoma* d.
A5.	Fusiform in shape, dense and heavily sclerotized cuticle, reticulation with thick walls, strong and stout chelicerae, with several denticulations (serrate) on the fixed digit, eyes reduced or lacking	Genus *Akrostomma* e

1. Genus *Eunicolina*......................... *E. porifera* (Greenberg, 1952) described from North America, and three European species: *E. tuberculata, E. travei* and *E. nova*. *Eunicolina nova* was assigned to the genus *Grandjeannelina* by Feider and Vasiliu (1968b) a

2. Genus *Labidostoma*, Kramer 1879 ... subgenus *Atyeonella* b

3. Southern Hemisphere, with characteristic bifid famulus (tarsi I), with unequal branches ... subgenus *Sellnickiella* f — Southern Hemisphere, simple famulus ... subgenus *Diacastriella* g

4. Famulus: central branch (“fruit”) rounded or elongated, surrounded by 5-6 branches, or fruit of varied shape...(7) — Famulus regressive, often hidden by dorsal setae, spine-like ... (5)
5. Anterior eye in subterminal position, body fusiform and elongated, absence of anterolateral projection on the dorsal shield (cornua) Subgenus Labidostoma

— Anterior eye in terminal position, and distinctly forward the insertion of setae (ga) and (boa), famulus smooth distally (baculiform), strong fixed digit of the chelicerae subgenus Pselistoma

6. Lateral line of pores of dorsal shields tied with differentiated cuticle drawing a relief surrounding the dorsal shield, interrupted forward and laterally in the ocular zone integrum group of species

— Not as above

7. One pustule on each side of dorsal shield, rather large and generally multiporous; famulus with fruit irregular in shape, spine-like; frontal eye not in a terminal position, sometimes lacking (glymma).

Legs: tibia and genu may be ornamented with alveoli similar to those of the dorsum or reticulate. Tibiae I and genua I long, of equal length, sometimes with reticulate ornamentation (L. multisetosa Shiba; 1969). Anterolateral projections more or less developed (cornua). Large body, chelicerae with proximal seta inserted at the top of a long tube, inferior tooth of fixed digit prolonged in a recurrent blade

Subgenus Cornutella (syn. Mahunkiella) — More or less regular shape of the fruit of famulus, rather rounded; one pair of multiporous gland-like organs, sometimes additional pustules (then uniporous) behind the lateral ones or even in the lateroposterior position; if the frontal eye exists, in terminal position above the chelicerae; genua of PI shorter than tibiae I; chelicerae with proximal seta inserted on a short tubercle

subgenus Nicoletiella

The integrum group

8. Thin paraxial tooth, ending irregularly; not a curved blade but a small inferior tooth, (ti)

— Not as above. L. (L.) intermedia n. sp.

— Not as above

9. (ti) transformed in a well defined blade, ventral shield with a line of 12 pores behind the fourth pair of coxae

— (ti) not modified as much. Ventral shield with a row of 10 pores placed in one line posterior to the fourth pair of coxae

L. (L.) caucasicum

Notes:

Notes on the genera and type species:

a – Eunicolina tuberculata Berlese 1911; distributed in the Northern Hemisphere, Mediterranean Basin and North America. Grandjeanellina nova (Sellnick, 1931): the genus Grandjeanellina was created by Feider and Vasiliu (1969) for this species, on the basis of the neochaetotaxy. However this hypertrichosis is not so exceptional and can affect the chaetotaxy in several species of Labidostoma. Until now the genus Eunicolina was only found in the North Hemisphere, Europe and North America (Greenberg, 1952).

b – Atyeonella fictiluteum (Atyeo & Crossley, 1961); Feider and Vasiliu erected Atyeonella to the generic level. Present in South Hemisphere: Australia, and South America (Bertrand 1990).

c – Sellnickiella brasiliense (Sellnick, 1922); Sellnickiella and Dicastriella lost the paired pustules; they are confined to the Southern Hemisphere; Southern America, Southern Africa, Australia, New Zealand.

d – Labidostoma Kramer, 1879; type species = L. (L.) integrum Berlese 1911. L. luteum is the most common species in Western Europe. Cosmopolitan genus. The genus is the most heterogeneous within the family.

e – Akrostomma Robaux, 1977; Akrostomma grandjeani Robaux, 1977; three described species (grandjeani Robaux, 1977, coraloides Bertrand and Coineau, 1978 and coineau Bertrand, 1983; and the Italian A. zangheri (Lombardini, 1943) was probably never collected again afterwards. Remarkable primitive famulus.

Subgenera:

f – Sellnickiella (Dicastriella) fusiformis Bertrand, 1990. The two subgenera Sellnickiella and Dicastriella are gathered in the "Gondwanan" genus Sellnickiella.
If the subgenus Sellnickiella is distributed in different continents, the subgenus Dicastriella was only found in the western part of South America (Chile). The main difference is the famulus, bifid or not.

g – The subgenus Labidostoma (type L. integrum Berlese 1911) was created to separate the species with or lacking anterolateral projections of the dorsal shield. Experience showed that the cornua are more or less developed and that this character cannot alone be the main cause of the systematic division. However, the absence of cornua is often correlated (species similar to integrum) with a simple spine like famulus. The Holarctic species of the genus Labidostoma can be divided in species a) with simple famulus, simple seta on tibia I, lacking cornua, with a prolonged dorsal shield and a sub terminal frontal eye (= subgenus Labidostoma) and b) species with primitive complex famulus with fruit more or less modified and several branches, with the frontal eye in a terminal position, a forked seta k’ on tibia I (= ssg. Nicoletiella) or: c), the frontal eye in a sub terminal position with irregular fruit of the famulus, tubercle proximal cheliceral seta long (= ssg. Cornutella).

h – A lineage clearly distinct in terms of morphology, the distribution of which must be further studied around the Mediterranean zone and western Asian countries.

i – Subgenus Labidostoma: assembly of species from the different continents.

j – Labidostoma (Cornutella.) cornutum (Canestrini et Fanzago, 1871). The subgenus Cornutella was used by Feider and Vasiliiu (1969), then the subgenus Mahunkiella was erected for two oriental species. The chelicerae, the long genua of PI are similar among L. cornutum, L. multisetosa and L. coreana. Reticular pattern on legs in multisetosa.

k – Labidostoma (N.) luteum Kramer, 1879. Some species with additional gland like organ were identified (L. jacquemarti Coineau, 1964, L. repetitor Grandjean, 1942, L. viarita Bertrand, 1982. Based on morphology, they are closer to L. luteum than to L. denticulata.

REFERENCES

Bertrand M., Corpuz Raros L.A. 1997 — Diversité du genre Labidostoma Kramer: nouvelles données apportées par l’étude de Labidostoma (Labidostoma)

COPYRIGHT

Bertrand M. et al. Acarologia is under free license. This open-access article is distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.