Morphometric Evidence for Three Sibling Species in Sycophila mellea (Hymenoptera: Chalcidoidea: Eurytomidae) in Britain, Parasitoids of Tetramesa sp. (Hymenoptera: Chalcidoidea: Eurytomidae) in Poaceae

1Hamid Ghajari, 2Hassan A. Dawah and 3Mike Bruford
1Department of Plant Protection, Aburayhan Campus, University of Tehran, Iran
2Department of Biology, King Khalid University, Saudi Arabia
3Department of Ecology, School of Bioscience, Cardiff University, UK

Abstract: The taxonomic status of Sycophila mellea (Curtis) species complex (Hymenoptera: Eurytomidae), reared from Tetramesa linearis (Walker), T. brevicornis (Walker) and T. eximia (Girault) feeding in the grasses Elymus repens (Viv), Festuca rubra (L.) and Ammophila arenaria (L.) respectively, were investigated using morphometric study. Morphometric analysis of S. mellea showed significant differences among those individuals reared from T. linearis, T. brevicornis and T. eximia. The S. mellea complex also exhibited morphological variation in size. The results of discriminant analysis showed that in males and females, S. mellea (ex T. linearis, T. eximia and T. brevicornis) populations were significantly different from each other, although it remains debatable whether they have yet reached separate species status.

Key words: Biological species, morphometric, hymenoptera, eurytomidae, Tetramesa, Sycophila, poaceae

INTRODUCTION

In many organisms, changes in the ecology of a species may be followed by changes in morphological characters. Taxonomists have used variable morphological characters as one of the primary data for separation and identification of species and population variation in thousands of different kinds of insects. Since the chalcidoids show cryptic morphological variability, their identification is very difficult and the application of fine-scale morphometric analysis to reveal subtle differences in shapes is necessary. The term morphometric comes from the Greek words morph (form) and metric (to measure) and involves the analysis of morphological structures. This approach enables the summarization of morphological data and the numerical and graphical expression of results. Statistical analysis can then be used to investigate possible relationships between populations (Daly, 1985). Using these methods population data can be measured, interpreted and compared in terms of shapes and structures for better quantitative analysis of morphological diversity (Pimental, 1979). Morphometry measures the distances between 'landmarks' which have been taken directly from the specimens and analyses may be performed to reveal species and character differences (Daly, 1985; Pungert, 1983).

Since insects have a hard exoskeleton, which retains the body form throughout adult life and after death, they are especially suitable for morphometric investigation (Sneath and Sokal, 1973) and indeed such approaches have been used in a wide diversity of studies and species. Typical examples are: morphometric variation between populations of the sibling species of D. melanogaster (McNamee and Dytham, 1993); confirmation of studies on acoustic signals of three sibling species of leafhopper

Corresponding Author: Hamid Ghajari, Department of Plant Protection, Aburayhan Campus, University of Tehran, Iran Tel: 00989122920210

82
Oncopsis flavicollis (L.) (Hemiptera: Cieaellidae) (Claridge and Nixon, 1986); morphometrics of selected allopatric populations of Cotesia flavipes (Cameron) (Hymenoptera: Braconidae) (Kimani-Njogo et al., 1997); intraspecific morphometric variability between populations of the beetle, Erichsonius tuberculatus Schuster and Grigorie (Coleoptera: Staphylinidae); (Masch and Plotner, 1993) and morphometric variation between populations of the diving beetle, Hydroporus glabrusculus (Coleoptera: Dytiscidae) (Bilton, 1993).

Insects of the genus Sycopha mellea (Curits, 1831) are small (2.0-2.5 mm in length), winged, generally orange, propodeum distinctly pale with dark T-shaped marking (Claridge, 1959), orange-black in colour and feed on nectar as adult wasps. In the larval stage, they are parasitic on various gall-forming Tetramesa species (= isosoma Walker, = Harmolita Motsch) (Hymenoptera: Eurytomidae) (Claridge, 1959).

The taxonomy of this complex is in a state of confusion. It is regarded as a single biological species (Fitton et al., 1978), or different biological species (Aega, 1991).

The taxonomic status of S. mellea reared from T. eximia, T. linearis and T. brevicornis, feeding on three host plants, Ammophila arenaria, E. repens and F. rubra, respectively has been studied by Anga (1991). He used enzyme electrophoresis and morphometric techniques and stated that a high degree of morphological distinctiveness was apparent amongst females Sycopha reared from T. eximia, T. linearis and T. brevicornis.

The purpose of this experiment is to investigate morphological variation within and between members of S. mellea, more especially to determine whether there are significant measurable changes in the morphology of the species attacking Tetramesa on different host grasses. The null hypothesis for this experiment was therefore that no morphological differences for exist S. mellea on attacking Tetramesa on three host grasses.

MATERIALS AND METHODS

Collection Sites

Rearing Individual Larvae from Stems
Rearing techniques of Tetramesa and Sycopha species larvae employed here was described by Dawah (1987). Grasses were collected in November 2000, when the larvae within had completed feeding (Graham and Claridge, 1965). The stems were dissected by scalpel without damaging the larvae when the larvae were fully fed and in diapause and placed in individual gelatine capsules and labelled. They were placed in a shed where they were constantly checked until Sycopha larvae were reared to adulthood. All males and females of Sycopha and Tetramesa used in all experiments were fed with 10% (w/v) honey solution. Grasses were identified using Hubbard (1954). Larvae were identified to species using Dawah and Rothfritz (1996) and host plant association. Reared specimens of S. mellea complex, together with host, host food-plant and collection sites are given in Table 1.
Table 1: Reared populations from the S. mellea complex, together with host, host food-plant and collection sites

<table>
<thead>
<tr>
<th>Host</th>
<th>Host food plant</th>
<th>Collection sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. eximia</td>
<td>A. arenaria</td>
<td>4, 5, 10</td>
</tr>
<tr>
<td>T. brevicornis</td>
<td>F. rubra</td>
<td>5, 6</td>
</tr>
<tr>
<td>T. linearis</td>
<td>E. repens</td>
<td>1, 2, 7, 8, 9</td>
</tr>
</tbody>
</table>

List of Specimens and Number of Individuals Used

S. mellea were sampled during 1999 and 2000 at three sites in South Wales and two sites in England. For this particular study, three populations of S. mellea were reared from three Tetramesa species (T. linearis, T. eximia and T. brevicornis) feeding on the grasses E. repens, A. arenaria and F. rubra. The insects were sexed. Accordingly, for each sex, 84 specimens were used to measure morphological characters (64 from E. repens, 10 from A. arenaria and 10 from F. rubra). Also three S. mellea populations from one grass (E. repens) from three locations (48 individuals from Rhoose, 10 from Cosmeton Lake and 6 from Cold Knap point in Wales) were used.

Choice of Characters

The characters were chosen based on one of two criteria traditionally used in taxonomic studies of Chalcidoidea and used to identify Syrphus species and others which could be reliably measured that could be potentially useful (Dawah, 1986; Anga, 1991). Fifty-five characters were chosen for females and 53 for males. Fourteen measurements were taken from the head and antenna, three from the forewing and 24 from the legs (i.e., foreleg, midleg and hindleg, eight characters each).

Morphological Characters Used

In this experiment from fifty-three characters for males and 55 for females only 24 characters were significant (Fig. 1a-f). These characters will be presented using abbreviations as seen below:

Adult Male and Female

Head
- CO: Distance between compound eye and oculus (Fig. 1a).
- AO: Distance between two top ocelli (Fig. 1a).
- BO: Distance between top and median ocelli (Fig. 1a).
- OF: Oral fossa (Fig. 1a).
- AM: Distance between antennal socket and proximal oral point (Fig. 1a).
- TM: Distance between upper compound eye and median ocellus (Fig. 1a).
- ANA: Width of antennal segment 1 (Fig. 1b).
- ANB: Width of antennal segment 2 (Fig. 1b).
- ANL: Angle of antennal segment 2 (Fig. 1b).
- ANK: Angle of antennal segment 4 (Fig. 1b).
- ANM: Angle of antennal club (Fig. 1b).

Forewing
- VB: Veinal break (Fig. 1c).
- MV: Marginal vein (Fig. 1c).
- V: Stigmal vein (Fig. 1c).

Legs
- FLG: Tarsal segment 4 of foreleg (Fig. 1d).
- FLH: Tarsal segment 5 of foreleg (Fig. 1d).
- MLC: Tibia spur of midleg (Fig. 1e).
- MLD: Tarsal segment 1 of midleg (Fig. 1e).
- MLE: Tarsal segment 2 of midleg (Fig. 1e).
- HLA: Femur of hindleg (Fig. 1f).
- HLB: Tibia of hindleg (Fig. 1f).
- HLC: Tibia spur of hindleg (Fig. 1f).
- HLG: Tarsal segment 4 of hindleg (Fig. 1f).
- HLH: Tarsal segment 5 of hindleg (Fig. 1f).

(a) Head

(b) Antenna
Preparation of Species for Measurement

In order that the insects used in this study had, after emergence, a hard skeleton, they were fed with honey solution (10% w/v) for three days where after they were killed by freezing for 10 min and put in 70% alcohol for 24 h. Individuals were then dissected into different body parts for measurement, with antennae, legs and wings pulled off the body using an entomological pin. All the body parts were fixed with water-soluble adhesive onto a white rectangular insect card (10 mm long, 5 mm wide). There were 84 such cards for both males and females (64 cards for insects from *E. repens*, 10 for insects from *A. arenaria* and 10 for *F. rubra*). For the male and female populations, 4452 and 4620 measurements were made, respectively.
Fig. 1: Morphometric characters of *Sycophila*
Measurement Procedure

Morphological distance measurements were made using a SigmaScan Image Analyser. Structures to be measured were magnified to the appropriate size using a binocular microscope, superimposed by a camera lucida on to a digitizing table and viewed on a television monitor. Before measurement, the microscope magnification was calibrated and kept unchanged throughout the measurements. The morphological characters used had very clear measuring points and were made from the left-hand side of the body. Each character was measured on the same day for all the populations of each sex to avoid error, since calibration might be slightly changed otherwise when new measurement were taken.

RESULTS AND DISCUSSION

Data analysis was performed using SPSS (Statistical Package for the social Science), Base 10.0 and Minitab ver. 13.0.

The ANOVA (Univariate Analysis of Variances) showed that the difference between members of *S. mellea* complex means is significant for some characters. ANOVA tests revealed: For males 14/29 characters (AO, CO, BO, TM, DF, AM, ANA, ANB, ANI, VB, MV, SV, HLB and HLC) and for females 13/28 characters, (ANB, ANK, ANM, NB, FLG, FLH, MLC, MLD, MLE, HLA, HLB, HLG, HLI) showed significant differences. The MANOVA (Multivariate Analysis of variances) tests showed significant population differences ($p = 0.001$) for males and females Table 2 and 3.

Table 2 and 3 summarizes the (DFA) for each character used, respectively, including the levels of variance significant for functions 1 and 2. Figure 2 and 3 are graphical presentations of group centroids for males and females separately, showing the degree of variation between members of *S. mellea* complex. For *S. mellea* female (according to host grass), all were highly separated from each other (Table 3). For male there is a big overlap between populations in relation to host grass (Fig. 2).

Results of reclassification tests of individuals of *S. mellea* using the original discriminant functions, derived with a prior specified group membership for both males and females, are shown in Table 6 and 7, respectively. The results based on grasses for males (Table 6) shows 100% for *F. rubra*, 98.4% for *E. repens* and 90% for *A. arenaria* reclassified into their original groups. The results based on grasses for females (Table 7) shows 100% for *F. rubra* 95.3% for *E. repens* and 80% for *A. arenaria* reclassified into their original groups.

Relatively few studies have carried out morphometric analysis on Eurytomidae. Al-Barrak *et al.* (2004) used morphometric technique to confirm the status of four closely related species of *Tetramesa*: studied different *Tetramesa* species and sibling species within *T. hyalipennis*: *T. longicornis* *T. petiolata* *T. calamagrostidis* and *T. hyalipennis*. However, he found that *T. hyalipennis* varəed from Elymus repens and E. farctus are conspecific. Despite the fact that many species complex are exists within Eurytomidae (Claridge and Dawah, 1994). Very few studies have been carried out on Eurytomidae.

The present results for *S. mellea* in relation to host grass show that for males, 29/53 morphological characters and for the females, 23/55 morphological characters, displayed significant differences among members of *Sycophila*. The similar results for *S. mellea* in relation to location show that for males, 42/53 of such characters and for females 46/55 of characters showed significant differences among members of *Sycophila*.

The pair-wise group comparison (Table 4 and 5) showed that morphologically the members of *Sycophila* are significantly different from each other.

Results of reclassification tests of individuals of *S. mellea* using the original discriminant functions, derived with a prior specified group membership for both males and females, are shown in Table 6 and 7, respectively. The high reclassification values indicate that the three groups of *S. mellea* showed high degrees of differentiation according to the associated grass of its *Tetramesa* host. In both
Fig. 2: Group centroids of the first two discriminant functions for males according to host grass. Plot of the first two discriminant functions of three groups of S. mellea collected from three grass species (1-E. repens, 2-A. arenaria, 3-F. rubra), showing the position of group centroids, where all the groups are morphologically separated from each other.

Fig. 3: Group centroids of the first two discriminant functions for females according to host grass. Plot of the first two discriminant functions of three groups of S. mellea, collected from three grasses species (1- E. repens, 2-A. arenaria, 3-F. rubra), showing the position of group centroids, where all the groups are morphologically separated from each other.
Table 2: Summary of canonical discriminant functions for male *S. melia*

<table>
<thead>
<tr>
<th>Function</th>
<th>Eig Val</th>
<th>%Var</th>
<th>%Cum</th>
<th>Can Cor</th>
<th>Wilk’s L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.586</td>
<td>69.7</td>
<td>69.7</td>
<td>0.775</td>
<td>0.241</td>
</tr>
<tr>
<td>2</td>
<td>0.656</td>
<td>30.3</td>
<td>100.0</td>
<td>0.629</td>
<td>0.604</td>
</tr>
</tbody>
</table>

Functions 1 shows significant difference with greatest variance

Table 3: Summary of canonical discriminant functions for female *S. melia* according to host grass

<table>
<thead>
<tr>
<th>Function</th>
<th>Eig Val</th>
<th>%Var</th>
<th>%Cum</th>
<th>Can Cor</th>
<th>Wilk’s L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.049</td>
<td>81.4</td>
<td>81.4</td>
<td>0.896</td>
<td>0.103</td>
</tr>
<tr>
<td>2</td>
<td>0.927</td>
<td>18.6</td>
<td>100.0</td>
<td>0.604</td>
<td>0.519</td>
</tr>
</tbody>
</table>

Functions 1 and 2 show significant difference with greatest variance. The meaning of the above statistical abbreviations are as following: Eig Val = Eigem Value; %Var = Percentage variance; %Cum = Percentage cumulative; Can Cor. = canonical correlation and Wilk's L = Wilks Lambda

Table 4: Pair-wise group comparisons for males of *S. melia* according to host grass

<table>
<thead>
<tr>
<th>Host plant</th>
<th>E. repens</th>
<th>A. arenaria</th>
<th>F. rubra</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. repens</td>
<td>-</td>
<td>14.6***</td>
<td>5.8***</td>
</tr>
<tr>
<td>A. arenaria</td>
<td>-</td>
<td>-</td>
<td>18.7***</td>
</tr>
<tr>
<td>F. rubra</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

**p<0.001

Table 5: Pair-wise group comparisons for females of *S. melia*

<table>
<thead>
<tr>
<th>Species</th>
<th>E. repens</th>
<th>A. arenaria</th>
<th>F. rubra</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. repens</td>
<td>-</td>
<td>5.9***</td>
<td>19.0***</td>
</tr>
<tr>
<td>A. arenaria</td>
<td>-</td>
<td>-</td>
<td>15.2***</td>
</tr>
<tr>
<td>F. rubra</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

**p<0.001

Table 6: Results of a classification of individual males from three species of grasses according to discriminant function

<table>
<thead>
<tr>
<th>Population</th>
<th>Predicted</th>
<th>Group</th>
<th>Membership</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. repens</td>
<td>63.0</td>
<td>1.0</td>
<td>0.0</td>
<td>64.0</td>
</tr>
<tr>
<td>A. arenaria</td>
<td>1.0</td>
<td>9.0</td>
<td>0.0</td>
<td>10.0</td>
</tr>
<tr>
<td>F. rubra</td>
<td>98.4</td>
<td>1.6</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>% E. Repens</td>
<td>10.0</td>
<td>90.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>A. Arenaria</td>
<td>100.0</td>
<td>0.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

97.0% of original grouped cases were correctly classified

Table 7: Results of a classification of individual females from three species of grasses according to discriminant function

<table>
<thead>
<tr>
<th>Population</th>
<th>Predicted</th>
<th>Group</th>
<th>Membership</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. repens</td>
<td>61.0</td>
<td>3.0</td>
<td>0.0</td>
<td>64.0</td>
</tr>
<tr>
<td>A. arenaria</td>
<td>2.0</td>
<td>8.0</td>
<td>0.0</td>
<td>10.0</td>
</tr>
<tr>
<td>F. rubra</td>
<td>95.4</td>
<td>4.7</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>% E. Repens</td>
<td>94.0</td>
<td>4.7</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

94.0% of original grouped cases were correctly classified

Sexes *F. rubra* with 100% reclassification showed the highest level of differentiation. Variation between the members of the *S. melia* complex was investigated using DFA. Table 2 and 3 show summaries of two Canonical Discriminant Functions. The highest variation was found in female populations according to host grass which showed 81.1% variation (Table 3) and male populations according to location which showed 69.7% variation for function one (Table 2). These results indicate a high degree of intra-population variation. Since, according to Reymert et al. (1984), such variation > 80% may be biologically significant. This evidence is highly suggestive of significant genetic divergence between members of the *S. melia* complex and hence for the existence of sibling species.
or incipient differentiation in host associated members of this parasitoid from (ex: *E. repens, A. arenaria* and *F. rubra*). The extent of variation in males was less than in females. Yet so, before relying solely on the results of the morphometric analysis, it would be necessary to determine the degree to which the phenotypic variability in *S. mellea* (ex *T. linearis, T. brevicornis* and *T. exenia*) is genetically induced. In conclusion, the results from the morphometrics studied reveal that members of the *S. mellea* complex (ex: *T. linearis, T. brevicornis* and possibly *T. exenia*) represent good biological taxa that have either already speciated or which are currently doing so. Any decision is to its exact status depends on whether or not they are within the same gene pool in nature. Since investigations into sibling species are very important for pest management strategies, the ability to identity biological species with unique genetic heritage is a fundamental necessity (Lawton et al., 1998; Basset, 2001). From the results of the present study, further morphological investigation based on abdomen and thorax characters among members of *S. mellea* complex is recommended.

REFERENCES

