نتایج تحقیقات:


4) مهاجرزاده، سید شمس الدین، C R Selvakumar، و D E Brodie . "Low temperature ion beam assisted deposition technique for realizing SiGe / Si heterostructures." Solid-State Electronics 37, no. 8 (1994): 1467-1469.


51) Seye Shamsodin Mohajer Zadeh, and. "ultra-violet assisted vertical etching of (100) silicon." Canadian Semiconductor Technology Conference, Quebec, August 16-20, 2005.

52) Yaser Abdi Abdi, Seye Shamsodin Mohajer Zadeh, and. "metal-free crystallization of silicon by RF-PECVD hydrogenation in low temperatures." Canadian Semiconductor Technology Conference, Quebec City, August 16-20, 2005.


"lateral hollow cathode pixle structure to realize DC plasma displays." International Display Research Conference, Kent, September 18-21, 2006.


"photo and cathedoluminescence from silicon nanocrystals fabricated by PECVD technique." International Conference on Bio-Nanotechnology, Dubai, November 18-21, 2006.


"Fabrication of flexible plasma display panels on PET substrates." Nanotech 2007, California, April 10-14, 2007.
plasma hydrogenation assisted high aspect ratio etching of silicon.” Tehran, May 6-8, 2007.

84) , , , Seye Shamsodin Mohajer Zadeh, , and . "smart etch or


87) , , Yaser Abdi Abdi, Seye Shamsodin Mohajer Zadeh, , , and . "Light emitting diodes on glass and silicon substrates fabricated using novel low temperature." International symposium on device research conference (ISDRS), Maryland, December 12-14, 2007.


99) Soleimani Amiri, Samaneh, Shima Rajabali, Azam Gholizadeh, zinab sanaei, and
1. وضعیت‌های داخلی

(۱) مهاجرت‌های سیدشمس‌الدین، "پرستی و ساخت کرنش سنگی‌های لا ئی ناقromatic روی میکرو" هفتمین کنفرانس مهندسی برخ، تهران، اردیبهشت ۲۷-۲۹۳۸.

۱۰۰) دهقان نیری، فاطمه، ایرانی ام اصل سلیمانی، حمیدشید صاعت رازه و سیدشمس‌الدین مهاجرت‌های "کنترل رشد نانوسمهای اکسید روی در دمای باین به روش رسوپ حمایتی". هفتمین کنفرانس مهندسی برخ، تهران، اردیبهشت ۲۷-۲۹۳۸.

۲. دهقان نیری، سیدشمس‌الدین، "مهاجرت‌های سیدشمس‌الدین، "هنگامی کنگره مهندسی برخ." شمعی ایران، تهران، اردیبهشت ۳۱-۳۱.

۳. شینگو، "EuroSensors. Porto" (۱۰۰) نتورى، اجمالی، "مهاجرت‌های سیدشمس‌الدین، "هنگامی کنگره مهندسی برخ." شمعی ایران، تهران، اردیبهشت ۳۱-۳۱.

۴. حمدی، علی، "مهاجرت‌های سیدشمس‌الدین، "هنگامی کنگره مهندسی برخ." شمعی ایران، تهران، اردیبهشت ۳۱-۳۱.

۵. حمدی، علی، "مهاجرت‌های سیدشمس‌الدین، "هنگامی کنگره مهندسی برخ." شمعی ایران، تهران، اردیبهشت ۳۱-۳۱.

۶. قربانی، ابراهیم، "مهاجرت‌های سیدشمس‌الدین، "هنگامی کنگره مهندسی برخ." شمعی ایران، تهران، اردیبهشت ۳۱-۳۱.

۷. قربانی، ابراهیم، "مهاجرت‌های سیدشمس‌الدین، "هنگامی کنگره مهندسی برخ." شمعی ایران، تهران، اردیبهشت ۳۱-۳۱.

۸. قربانی، ابراهیم، "مهاجرت‌های سیدشمس‌الدین، "هنگامی کنگره مهندسی برخ." شمعی ایران، تهران، اردیبهشت ۳۱-۳۱.

۹. قربانی، ابراهیم، "مهاجرت‌های سیدشمس‌الدین، "هنگامی کنگره مهندسی برخ." شمعی ایران، تهران، اردیبهشت ۳۱-۳۱.

۱۰. علی‌محمدی، ابراهیم، "مهاجرت‌های سیدشمس‌الدین، "هنگامی کنگره مهندسی برخ." شمعی ایران، تهران، اردیبهشت ۳۱-۳۱.

۱۱. جهانگیری، علی‌محمد، "مهاجرت‌های سیدشمس‌الدین، "هنگامی کنگره مهندسی برخ." شمعی ایران، تهران، اردیبهشت ۳۱-۳۱.

۱۲. جهانگیری، علی‌محمد، "مهاجرت‌های سیدشمس‌الدین، "هنگامی کنگره مهندسی برخ." شمعی ایران، تهران، اردیبهشت ۳۱-۳۱.

۱۳. جهانگیری، علی‌محمد، "مهاجرت‌های سیدشمس‌الدین، "هنگامی کنگره مهندسی برخ." شمعی ایران، تهران، اردیبهشت ۳۱-۳۱.

۱۴. جهانگیری، علی‌محمد، "مهاجرت‌های سیدشمس‌الدین، "هنگامی کنگره مهندسی برخ." شمعی ایران، تهران، اردیبهشت ۳۱-۳۱.

۱۵. جهانگیری، علی‌محمد، "مهاجرت‌های سیدشمس‌الدین، "هنگامی کنگره مهندسی برخ." شمعی ایران، تهران، اردیبهشت ۳۱-۳۱.

۱۶. جهانگیری، علی‌محمد، "مهاجرت‌های سیدشمس‌الدین، "هنگامی کنگره مهندسی برخ." شمعی ایران، تهران، اردیبهشت ۳۱-۳۱.

۱۷. جهانگیری، علی‌محمد، "مهاجرت‌های سیدشمس‌الدین، "هنگامی کنگره مهندسی برخ." شمعی ایران، تهران، اردیبهشت ۳۱-۳۱.
After the experiments, Si and SiGe were obtained from the etched material and used in the fabrication of photonic crystal using deep vertical etching of Polyethylene Terephthalate Plastic. The results were compared with the theoretical predictions, and a good agreement was observed. Furthermore, the fabricated devices were tested for their optical properties, and the results showed that the devices have potential for applications in optical communication systems.


The fabricated photonic crystals were used in the fabrication of a two-dimensional photonic crystal using deep vertical etching of Polyethylene Terephthalate Plastic. The results showed that the fabricated devices have potential for applications in optical communication systems.


The fabricated photonic crystals were used in the fabrication of a two-dimensional photonic crystal using deep vertical etching of Polyethylene Terephthalate Plastic. The results showed that the fabricated devices have potential for applications in optical communication systems.


The fabricated photonic crystals were used in the fabrication of a two-dimensional photonic crystal using deep vertical etching of Polyethylene Terephthalate Plastic. The results showed that the fabricated devices have potential for applications in optical communication systems.